Entrar Página Discusión Historial Go to the site toolbox

Prisma entre placas conductoras

De Laplace

(Diferencias entre revisiones)
(Matriz de coeficientes de capacidad)
(Cargas y potenciales en las placas. Energía en el sistema)
Línea 36: Línea 36:
===Cargas y potenciales en las placas. Energía en el sistema===
===Cargas y potenciales en las placas. Energía en el sistema===
 +
La matriz que acabamos de calcular en el apartado anterior caracteriza eléctricamente al sistema, relacionando las cargas eléctricas almacenadas en los conductores "1", "2" y "3", con los valores de potencial en ellos:
 +
<center>
 +
<math>\left(\begin{array}
 +
{c} Q_1 \\ \\ Q_2 \\ \\ Q_3
 +
\end{array}\right)=\frac{\varepsilon_0 L^2}{a}\left(\begin{array} {ccc}1 & 0 & 0\\ 0 &
 +
\displaystyle\frac{1}{2}&0 \\ 0 & 0 & \displaystyle\frac{1}{3}
 +
\end{array}\right)\left(\begin{array}
 +
{c} V_1 \\ \\ V_2 \\ \\ V_3
 +
\end{array}\right)
 +
</math></center>
 +
Estos valores de potencial se miden respecto del conductor de referencia; es decir, se considera <math>V_4=0</math>. Por otra parte, la carga eléctrica en el prisma será igual a la suma de la que haya en sus caras laterales que, como hemos dicho, se encuentran en influencia total con las placas. Por tanto,
 +
<center><math>Q_4=-\left(Q_1+Q_2+Q_3\right)
 +
</math></center>
 +
===Presión electrostática y fuerza neta sobre el prisma===
===Presión electrostática y fuerza neta sobre el prisma===

Revisión de 11:48 17 jul 2008

Contenido

1 Enunciado

Se tiene el sistema de la figura, formado por un prisma triangular (“4”), cuya base es un triángulo equilátero de lado L, y cuya altura es también L. Este prisma está conectado a tierra. Frente a él se encuentran tres placas cuadradas de lado L situadas a distancia a, 2a y 3a (a\ll L), respectivamente. Las placas “1” y “3” se conectan a un voltaje V0, mientras que la “2” almacena una carga Q0
  1. Halle la matriz de coeficientes de capacidad en este sistema de cuatro conductores. Desprecie los efectos de borde.
  2. Calcule la carga y el potencial de cada placa, así como la energía total del sistema.
  3. Calcule la presión electrostática en cada cara del prisma. A partir de la presión, halle la fuerza neta sobre el prisma.

2 Solución

2.1 Matriz de coeficientes de capacidad

Para calcular los coeficientes de capacidad del sistema bajo estudio, obtendremos primero los elementos de su circuito equivalente. Éste es, sin duda, el procedimiento más simple.

El conductor "4" está conectado a tierra, por tanto, lo consideraremos como conductor de referencia. Y como los efectos de borde son despreciables, pues L\gg a, podemos asumir que cada uno de los conductores "1", "2" y "3" se encuentran en influencia total con el "4". O lo que es lo mismo, este conductor actúa de pantalla entre los otros. Por tanto, se tendrá que...

\overline{C}_{12}=\overline{C}_{23}=\overline{C}_{13}=0

Las autocapacidades \overline{C}_{ii} modelan los tubos de campo eléctrico (conjuntos de líneas de campo) existentes entre cada una de las placas cuadradas y el prisma triangular que hemos adoptado como conductor de referencia. Al despreciar los efectos de borde, cada cara del prisma forma un condensador plano--paralelo con la placa que tiene enfrentada. La sección de los tres condensadores es L2, pero las separaciones entre el prisma y las placas "1", "2" y "3" son a, 2a y 3a, respectivamente. Por tanto, se tendrá:

\overline{C}_{11}=\frac{\varepsilon_0 L^2}{a}\mbox{;}\qquad
\overline{C}_{22}=\frac{\varepsilon_0 L^2}{2a}\mbox{;}\qquad
\overline{C}_{22}=\frac{\varepsilon_0 L^2}{3a}

A continuación, obtenemos la matriz de coeficientes de capacidad utilizando las expresiones que relacionan a éstos con las capacidades eléctricas y las autocapacidades anterioremente expresadas:

\left.\begin{array}
{l} C_{ij}=-\overline{C}_{ij}=0\mbox{;}\quad \mbox{para}\;\; i,j=1,2,3\mbox{,}
\;\; \mbox{con}\;\; i\neq j\\ \\ \displaystyle C_{ii}=\sum_{j=1}^3\overline{C}_{ij}=\overline{C}_{ii}\mbox{;}\quad \mbox{para}\;\; i=1,2,3
\end{array}\right\}     \Rightarrow     \displaystyle\mathbf{C}
=\frac{\varepsilon_0 L^2}{a}\left(\begin{array} {ccc}1 & 0 & 0\\ 0 &
\displaystyle\frac{1}{2}&0 \\ 0 & 0 & \displaystyle \frac{1}{3}
\end{array}\right)

2.2 Cargas y potenciales en las placas. Energía en el sistema

La matriz que acabamos de calcular en el apartado anterior caracteriza eléctricamente al sistema, relacionando las cargas eléctricas almacenadas en los conductores "1", "2" y "3", con los valores de potencial en ellos:

\left(\begin{array}
{c} Q_1 \\ \\ Q_2 \\ \\ Q_3
\end{array}\right)=\frac{\varepsilon_0 L^2}{a}\left(\begin{array} {ccc}1 & 0 & 0\\ 0 &
\displaystyle\frac{1}{2}&0 \\ 0 & 0 & \displaystyle\frac{1}{3}
\end{array}\right)\left(\begin{array}
{c} V_1 \\ \\ V_2 \\ \\ V_3
\end{array}\right)

Estos valores de potencial se miden respecto del conductor de referencia; es decir, se considera V4 = 0. Por otra parte, la carga eléctrica en el prisma será igual a la suma de la que haya en sus caras laterales que, como hemos dicho, se encuentran en influencia total con las placas. Por tanto,

Q_4=-\left(Q_1+Q_2+Q_3\right)

2.3 Presión electrostática y fuerza neta sobre el prisma

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace