Entrar Página Discusión Historial Go to the site toolbox

Resorte con rozamiento seco

De Laplace

(Diferencias entre revisiones)
(Máxima distancia sin rozamiento)
(Posición de la segunda parada)
 
(26 ediciones intermedias no se muestran.)
Línea 20: Línea 20:
La única fuerza que afecta al movimiento es la fuerza elástica debida al resorte. Además de esta actúan el peso y la reacción normal del plano, pero éstas se anulan mutuamente y no producen movimiento.
La única fuerza que afecta al movimiento es la fuerza elástica debida al resorte. Además de esta actúan el peso y la reacción normal del plano, pero éstas se anulan mutuamente y no producen movimiento.
-
En la posición inicial el muelle está comprimido una cierta cantidad y a partir de ahí se suelta desde el reposo. El movimiento que describe la masa es un movimiento armónico simple alrededor de la posición de equilibrio  
+
En la posición inicial el muelle está comprimido una cierta cantidad y a partir de ahí se suelta desde el reposo. El movimiento que describe la masa es un movimiento armónico simple alrededor de la posición de equilibrio.
 +
[[Archivo:rozamiento-seco-resorte-01.png|right]]
 +
 +
En el instante inicial, la partícula se encuentra en reposo a una distancia <math>b</math> del punto de equilibrio. La amplitud de las oscilaciones que describe tendrán entonces esta amplitud
 +
 +
<center><math>A = b\,</math></center>
 +
 +
La partícula comienza a moverse en un punto a una distancia b del punto de equilibrio, se acelera hacia éste, pasa por el punto de equilibrio con velocidad máxima y a partir de ahí comienza a frenarse, llegando a detenerse cuando se encuentra en el punto simétrico respecto del central. Por tanto, la máxima distancia del origen la alcanza en
 +
 +
<center><math>x_\mathrm{max} = l_0+b\,</math></center>
 +
 +
A partir de ahí retrocede, volviendo a detenerse en la posición inicial, reiniciándose el proceso.
 +
 +
<!--
<center><math>x = l_0 + A\cos(\omega t-\varphi)\qquad\qquad v=\frac{\mathrm{d}x}{\mathrm{d}t}=-A\omega\,\mathrm{sen}(\omega t-\varphi)\qquad\qquad\omega = \sqrt{\frac{k}{m}}</math></center>
<center><math>x = l_0 + A\cos(\omega t-\varphi)\qquad\qquad v=\frac{\mathrm{d}x}{\mathrm{d}t}=-A\omega\,\mathrm{sen}(\omega t-\varphi)\qquad\qquad\omega = \sqrt{\frac{k}{m}}</math></center>
Línea 28: Línea 41:
<center><math>\left\{\begin{array}{rcl} x(t=0) & = & l_0-b = l_0+A\cos(\varphi) \\ v(t=0) & = & 0 =-A\omega\,\mathrm{sen}(-\varphi)\end{array}\right.\qquad\Rightarrow\qquad A=b\,\qquad\varphi = \pi</math></center>
<center><math>\left\{\begin{array}{rcl} x(t=0) & = & l_0-b = l_0+A\cos(\varphi) \\ v(t=0) & = & 0 =-A\omega\,\mathrm{sen}(-\varphi)\end{array}\right.\qquad\Rightarrow\qquad A=b\,\qquad\varphi = \pi</math></center>
-
[[Archivo:rozamiento-seco-resorte-01.png|right]]De estas ecuaciones podría tomarse como solución que <math>A=-b</math>, <math>\varphi=0</math>, pero, aunque el resultado final es el mismo, debemos procurar tomar la amplitud como una cantidad positiva. Lo que nos dice la constante de fase <math>\varphi=\pi</math> es que la oscilación comienza en el punto de mínima elongación en lugar del de máxima.
+
De estas ecuaciones podría tomarse como solución que <math>A=-b</math>, <math>\varphi=0</math>, pero, aunque el resultado final es el mismo, debemos procurar tomar la amplitud como una cantidad positiva. Lo que nos dice la constante de fase <math>\varphi=\pi</math> es que la oscilación comienza en el punto de mínima elongación en lugar del de máxima.
La posición para todo instante es entonces de la forma
La posición para todo instante es entonces de la forma
Línea 37: Línea 50:
<center><math>x_\mathrm{max} = l_0+b\,</math></center>
<center><math>x_\mathrm{max} = l_0+b\,</math></center>
-
 
+
-->
Numéricamente en nuestro caso
Numéricamente en nuestro caso
<center><math>x_\mathrm{max}=150\,\mathrm{mm}+50\,\mathrm{mm} = 200\,\mathrm{mm}</math></center>
<center><math>x_\mathrm{max}=150\,\mathrm{mm}+50\,\mathrm{mm} = 200\,\mathrm{mm}</math></center>
 +
<!--
Este resultado se expresa de forma sencilla con palabras: tenemos el muelle en equilibrio, lo comprimimos 50mm respecto a la posición de equilibrio; el máximo alejamiento se da cuando el estiramiento del muelle es igual a la compresión inicial.
Este resultado se expresa de forma sencilla con palabras: tenemos el muelle en equilibrio, lo comprimimos 50mm respecto a la posición de equilibrio; el máximo alejamiento se da cuando el estiramiento del muelle es igual a la compresión inicial.
 +
-->
 +
[[Archivo:rozamiento-seco-resorte-02.png|right]]
A este resultado se puede llegar también de manera sencilla empleando consideraciones energéticas. Para cualquier posición de la masa, ésta tiene una energía potencial elástica proporcional a la elongación al cuadrado
A este resultado se puede llegar también de manera sencilla empleando consideraciones energéticas. Para cualquier posición de la masa, ésta tiene una energía potencial elástica proporcional a la elongación al cuadrado
Línea 48: Línea 64:
<center><math>U = \frac{1}{2}k(x-l_0)^2</math></center>
<center><math>U = \frac{1}{2}k(x-l_0)^2</math></center>
-
En ausencia de rozamiento, la energía mecánica se conserva.
+
En ausencia de rozamiento, la energía mecánica se conserva, por lo que podemos igualar la energía mecánica inicial con la final. En el estado inicial, la velocidad de la masa es nula, por lo que su energía cinética vale 0, toda la energía mecánica es potencial y la partícula se halla en un punto de retorno.
 +
 
 +
En la posición de máximo alejamiento, la velocidad vuelve a ser nula, por lo que la partícula se encuentra en el otro punto de retorno, en el que la energía mecánica vuelve a ser solo potencial. Por tanto
 +
 
 +
<center><math>\frac{1}{2}k(x(0)-l_0)^2 = \frac{1}{2}(x_\mathrm{max})-l_0)^2</math></center>
 +
 
 +
de donde
 +
 
 +
<center><math>b^2 = (x_\mathrm{max}-l_0)^2 \qquad \Rightarrow\qquad x_\mathrm{max} = l_0+b</math></center>
 +
 
 +
La ecuación posee otra solución <math>l_0-b</math> correspondiente a la posición inicial.
==Máxima distancia con rozamiento==
==Máxima distancia con rozamiento==
 +
Cuando el bloque roza con el suelo aparece una fuerza adicional. Esta nueva fuerza es la de rozamiento dinámico, proporcional a la fuerza normal aplicada. La fuerza normal aplicada es igual al peso en módulo y dirección, y sentido opuesto. Por tanto
 +
 +
<center><math>|\vec{F}_r| = \mu|\vec{F}| = \mu m g = 0.1\cdot 5.0\cdot 9.81\,\mathrm{N} = 4.9\,\mathrm{N}</math></center>
 +
 +
Esta fuerza es constante en módulo y dirección, pero no en sentido. La fuerza de rozamiento dinámico siempre se opone a la velocidad relativa, por lo tanto, cuando la partícula avance hacia la derecha, la fuerza de rozamiento irá hacia la izquierda y viceversa.
 +
 +
Para determinar la posición de máximo alejamiento debemos considerar una parte del movimiento en que x es siempre creciente, por lo que la fuerza de rozamiento irá siempre en el sentido de x decreciente y la ecuación de movimiento para la masa se escribe
 +
 +
<center><math>ma = -k(x-l_0)-\mu mg\,</math></center>
 +
 +
Esta ecuación es de nuevo la de un oscilador armónico, pero con un punto de equilibrio diferente del anterior. Podemos obtener la nueva posición de equilibrio viendo para que valor de x la aceleración se anula, o bien agrupando términos.
 +
 +
<center><math>ma = -k(x-l_0)-\mu mg = -k\left(x-l_0+\frac{\mu mg}{k}\right) = -k\left(x-l\mathrm{eq}\right)\qquad\qquad l_\mathrm{eq}=l_0-\frac{\mu mg}{k}=145.1\,\mathrm{mm}</math></center>
 +
 +
Puesto que, como antes, parte del reposo, el movimiento resultante es media oscilación alrededor del nuevo punto de equilibrio. A partir de ahí la fuerza de rozamiento cambia de sentido.
 +
 +
La amplitud de la oscilación igual a la diferencia entre la posición de equilibrio y la inicial. Esta distancia no es <math>b</math> sino una cantidad menor,
 +
 +
<center><math>A = l_\mathrm{eq}-\left(l_0-b\right) = b-\frac{\mu mg}{k}</math></center>
 +
 +
La nueva distancia máxima se alcanza cuando la masa llega al punto simétrico respecto a la nueva posición de equilibrio
 +
 +
<center><math>x_\mathrm{max} = l_\mathrm{eq}+A = \left(l_0-\frac{\mu mg}{k}\right)+\left(b-\frac{\mu mg}{k}\right) = l_0+b-\frac{2\mu mg}{k}</math></center>
 +
 +
Vemos que el alcance máximo se ve reducido en una cantidad proporcional al coeficiente de rozamiento. El valor numérico de esta cantidad es
 +
 +
<!--
 +
<center><math>x(t) = l_\mathrm{eq}+A\cos(\omega t-\varphi)\,</math></center>
 +
 +
Aplicando de nuevo las condiciones iniciales
 +
 +
<center><math>\left\{\begin{array}{rcl} x(t=0) & = & l_0-b = l_\mathrm{eq}+A\cos(\varphi) \\ v(t=0) & = & 0 =-A\omega\,\mathrm{sen}(-\varphi)\end{array}\right.\qquad\Rightarrow\qquad A=b-\frac{\mu m g}{k}\,\qquad\varphi = \pi</math></center>
 +
 +
Obtenemos la ecuación horaria
 +
 +
<center><math>x(t) = l_0-\frac{\mu m g}{k}-\left(b-\frac{\mu mg}{k}\right)\cos(\omega t)</math></center>
 +
 +
Obsérvese que no solo cambia la posición de equilibrio, sino también la amplitud de las oscilaciones, pues el nuevo punto de equilibrio está más cerca de la posición inicial.
 +
 +
El nuevo alcance máximo lo obtenemos haciendo <math>t = T/2 = \pi/\omega</math>
 +
 +
<center><math>x_\mathrm{max}=l_0-\frac{\mu m g}{k}+\left(b-\frac{\mu mg}{k}\right) = l_0+b-\frac{2\mu m g}{k}</math></center>
 +
-->
 +
<center><math>x_\mathrm{max} = 150\,\mathrm{mm}+50\,\mathrm{mm} -\frac{2\cdot4.90\,\mathrm{N}}{1.0\,\mathrm{N}/\mathrm{mm}}=190.2\,\mathrm{mm}</math></center>
 +
 +
[[Archivo:rozamiento-seco-resorte-04.png|right]]
 +
 +
En términos energéticos, lo que tenemos en este caso es que no se conserva la energía mecánica, por existir fuerzas no conservativas en el sistema. La disminución de la energía mecánica la da el trabajo debido a estas fuerzas
 +
 +
<center><math>\Delta(K+U) = W_\mathrm{nc} = \int_{x_0}^x (-\mu mg)\,\mathrm{d}x</math></center>
 +
 +
Por ser esta fuerza constante, puede salir de la integral y nos queda
 +
 +
<center><math>\Delta(K + U) = -\mu m g(x-x_0) = -\mu m g(x-(l_0-b))\,</math></center>
 +
 +
El máximo alcance se da cuando la energía cinética vuelve a ser cero. Esto nos da la ecuación para el balance energético
 +
 +
<center><math>U_f-U_i = \frac{1}{2}k(x-l_0)^2-\frac{1}{2}kb^2 = -\mu m g\left(x-l_0+b\right)=W_\mathrm{nc}</math></center>
 +
 +
Llegamos así a la ecuación de segundo grado
 +
 +
<center><math>(x-l_0)^2 - b^2 + \frac{2\mu mg}{k}(x-l_0+b)=0</math></center>
 +
 +
cuyas soluciones son
 +
 +
<center><math>x = l_0 - b\qquad\qquad x = l_0+ b -\frac{2\mu mg}{k}</math></center>
 +
 +
La primera es la posición inicial. La segunda es la posición de máximo alcance.
 +
 +
Gráficamente, en este caso la energía mecánica disminuye linealmente con la posición, por lo que en lugar de una recta horizontal tenemos una oblicua. Donde esta recta corta a la parábola es la posición de máximo alcance.
 +
==Posición de la segunda parada==
==Posición de la segunda parada==
 +
Una vez que llega al punto de máximo alejamiento, la partícula retorna.
 +
 +
Si no existe rozamiento, la posición de mínima distancia es la misma que la inicial. El movimiento armónico continúa indefinidamente, oscilando entre la posición mínima y la máxima.
 +
 +
Cuando hay rozamiento, en cambio, las oscilaciones se van atenuando progresivamente. La razón es que la fuerza de rozamiento siempre se opone a la velocidad relativa. Esto quiere decir que en el retorno la ecuación de movimiento es
 +
 +
<center><math>ma = -k(x-l_0)+\mu mg\,</math></center>
 +
 +
donde ha cambiado el signo de la fuerza de rozamiento, respecto al camino de ida. Esto nos da una nueva posición de equilibrio, diferente de la anterior
 +
 +
<center><math>ma = -k\left(x-l_0-\frac{\mu m g}{k}\right) = -k(x-l'_\mathrm{eq}) \qquad\qquad l'_\mathrm{eq}=l_0+\frac{\mu m g}{k}=154.9\,\mathrm{mm}</math></center>
 +
 +
El movimiento en esta media oscilación es de nuevo armónico. La posición inicial en este medio periodo es la de máxima distancia calculada en el paratdo anterior. la distancia de este punto a la nueva posición de equilibrio es
 +
 +
<center><math>A' =x_\mathrm{max}-l'_\mathrm{eq}=\left(l_0+b-\frac{2\mu mg}{k}\right)-\left(l_0+\frac{\mu m g}{k}\right) = b-\frac{3\mu m g}{k}</math></center>
 +
 +
La mínima distancia a la pared se alcanza de nuevo en el punto simétrico respecto a esta posición inicial
 +
 +
<center><math>x_\mathrm{min}=l'_\mathrm{eq}-A' = l_0-b+\frac{4\mu mg}{k}</math></center>
 +
<!--
 +
<center><math>x(t) = l'_\mathrm{eq}+A'\cos(\omega t -\varphi')</math></center>
 +
 +
donde ahora nuestros datos iniciales no son los correspondientes a <math>t=0</math>, sino los calculados en el apartado anterior para la segunda posición de retorno, para la cual <math>t = T/2 =\pi/\omega</math>
 +
 +
<center><math>\left\{\begin{array}{rcl} x(t=\pi/\omega) & = & x_\mathrm{max} = l'_\mathrm{eq}+A'\cos(\pi - \varphi') \\ v(t=\pi/\omega) & = & 0 =-A'\omega\,\mathrm{sen}(\pi-\varphi')\end{array}\right.\qquad\Rightarrow\qquad A'=x_\mathrm{max}-l'_\mathrm{eq}\,\qquad\varphi' = 0</math></center>
 +
 +
La posición mínima será la correspondiente al siguiente medio periodo
 +
 +
<center><math>x_\mathrm{min}=x(T) = l'_\mathrm{eq}-A' = 2l'_\mathrm{eq}-x_\mathrm{max}=2\left(l_0+\frac{\mu mg}{k}\right)-\left(l_0+b-\frac{2\mu mg}{k}\right) = l_0-b+\frac{4\mu mg}{k}</math></center>
 +
-->
 +
con el valor numérico
 +
 +
<center><math>x_\mathrm{min}= 150\,\mathrm{mm}-50\,\mathrm{mm}+4\cdot(4.9\,\mathrm{mm}) = 119.6\,\mathrm{mm}</math></center>
 +
 +
[[Archivo:rozamiento-seco-resorte-05.png|right]]
 +
 +
A partir de ahí la partícula vuelve a avanzar, reduciéndose aun más la distancia máxima (porque parte de una posición más cercana a la de equilibrio. Los sucesivos máximos son
 +
 +
<center><math>x_\mathrm{max}=\left\{l_0+b-\frac{2\mu m g}{k}, l_0+b-\frac{6\mu m g}{k}, l_0+b-\frac{10\mu m g}{k},\ldots\right\}</math>
 +
</center>
 +
 +
de valores
 +
 +
<center><math>x_\mathrm{max} = \{190.2\,\mathrm{mm}, 170.6\,\mathrm{mm}, 151.0\,\mathrm{mm}, 131.4\,\mathrm{mm}\,\ldots\}</math></center>
 +
 +
mientras que los sucesivos mínimos se hallan en
 +
 +
<center><math>x_\mathrm{min}=\left\{l_0-b, l_0-b+\frac{4\mu m g}{k}, l_0-b+\frac{8\mu m g}{k},\ldots\right\}</math>
 +
</center>
 +
 +
con valores
 +
 +
<center><math>x_\mathrm{min} = \{100.0\,\mathrm{mm},119.6\,\mathrm{mm}, 139.2\,\mathrm{mm}, 158.8\,\mathrm{mm}\,\ldots\}</math></center>
 +
 +
Un rápido examen a estos valores muestra que llega un punto en que son imposibles, pues resulta un mínimo mayor que un máximo. La razón es que antes de llegar a esa situación la partícula se ha detenido definitivamente como veremos en la sección siguiente.
 +
 +
En términos energéticos, la energía mecánica continúa disminuyendo de manera lineal en cada ida y cada vuelta, ya que en cada caso la fuerza es constante en modulo y el trabajo que realiza proporcional a la distancia recorrida. Con esto se van hallando como en la sección anterior los sucesivos puntos de retorno.
 +
 +
<center>[[Archivo:rozamiento-seco-resorte-06.png]]</center>
 +
==Oscilaciones hasta la detención==
==Oscilaciones hasta la detención==
-
==Consideraciones sobre la energía==
+
Según al resultado anterior, la posición de máximo alcance va disminuyendo linealmente con el número de oscilaciones, mientras que la de mínima distancia va aumentando. Matemáticamente resulta que necesariamente estas dos rectas se cruzan y la posición de mínima distancia está más lejos que la de máxima distancia, lo cual es absurdo.
 +
 
 +
Esto no ocurre en la realidad, porque antes de que se produzca este cruce la masa se ha detenido por completo y ya no se mueve en un sentido u otro. El rozamiento ha conseguido detener por completo a la masa.
 +
 
 +
La posición de reposo permanente no es, como podría pensarse, el mínimo de energía potencial sino que puede estar a un lado u otro de él (aunque estará cerca). El proceso es como sigue: en cada oscilación la masa llega a pararse instantáneamente, en el máximo o en el mínimo. A partir de ahí vuelve a moverse, pero solo si la fuerza elástica es capaz de vencer a la fuerza de rozamiento estático. Si la fuerza elástica es menor que la fuerza máxima de rozamiento, no es capaz de arrancarla de nuevo y la masa se queda parada.
 +
 
 +
En los sucesivos máximos, la fuerza con la que el resorte intenta hacer retroceder a la masa es proporcional a la distancia entre esta posición y la longitud natural del resorte. Lo mismo ocurre en las posiciones de mínima distancia. Por tanto, se trata de ver en qué momento se cumple por primera vez que
 +
 
 +
<center><math>k\left|x_\mathrm{min}-l_0\right| < F_r\qquad\qquad \mbox{o}\qquad\qquad k\left|x_\mathrm{max}-l_0\right| < F_r</math></center>
 +
 
 +
La fuerza de rozamiento vale, según dijimos, 4.9&thinsp;N. Para los sucesivos máximos y mínimos tenemos las fuerzas
 +
 
 +
{| class="bordeado"
 +
|-
 +
! <math>x_\mathrm{min}\,(\mathrm{mm})</math>
 +
! <math>k|x_\mathrm{min}-l_0|\,(\mathrm{N})</math>
 +
! <math>x_\mathrm{max}\,(\mathrm{mm})</math>
 +
! <math>k|x_\mathrm{max}-l_0|\,(\mathrm{N})</math>
 +
|-
 +
| 100.0
 +
| 50.0
 +
| 190.2
 +
| 40.2
 +
|-
 +
| 119.6
 +
| 30.4
 +
| 170.6
 +
| 20.6
 +
|-
 +
| 139.2
 +
| 10.8
 +
| 151.0
 +
| '''<span style="color:red">1.0</span>'''
 +
|}
 +
 
 +
Vemos que en el tercer máximo la fuerza recuperadora es de solo 1.0&thinsp;N e inferior a la de rozamiento máximo. Por ello, la masa realiza solo dos oscilaciones y media y se queda finalmente parada a 1&thinsp;mm de la posición de equilibrio.
[[Categoría:Problemas de dinámica de la partícula (GIE)]]
[[Categoría:Problemas de dinámica de la partícula (GIE)]]

última version al 18:47 22 ene 2012

Contenido

1 Enunciado

Se tiene una masa m=5.00\,\mathrm{kg} atada a un resorte de constante k=10.0\,\mathrm{N}/\mathrm{cm} y longitud en reposo l_0=150\,\mathrm{mm}. La masa reposa sobre una superficie horizontal sobre la que existe un pequeño coeficiente de rozamiento μ = 0.10. El muelle se comprime una cantidad b=50\,\mathrm{mm} respecto a su posición de equilibrio.

  1. Despreciando en primer lugar el rozamiento, determine la máxima distancia de la pared a la que llega la masa.
  2. Teniendo en cuenta el rozamiento, ¿cuánto vale la distancia de máximo alejamiento?
  3. Al volver a comprimirse el muelle, la masa no retorna a su posición inicial. ¿A qué distancia de la pared se detiene instantáneamente?
  4. ¿Al cabo de cuantas oscilaciones se detiene del todo? ¿Dónde se queda parada?
Archivo:resorte-pared-rozamiento.png

2 Máxima distancia sin rozamiento

Cuando no hay rozamiento, el análisis es sencillo.

Tenemos un movimiento rectilíneo, por lo que podemos emplear cantidades escalares.

Si llamamos x a la distancia desde la pared, la ecuación de movimiento para la masa la da la ley de Hooke,

ma = -k(x-l_0)\,

La única fuerza que afecta al movimiento es la fuerza elástica debida al resorte. Además de esta actúan el peso y la reacción normal del plano, pero éstas se anulan mutuamente y no producen movimiento.

En la posición inicial el muelle está comprimido una cierta cantidad y a partir de ahí se suelta desde el reposo. El movimiento que describe la masa es un movimiento armónico simple alrededor de la posición de equilibrio.

En el instante inicial, la partícula se encuentra en reposo a una distancia b del punto de equilibrio. La amplitud de las oscilaciones que describe tendrán entonces esta amplitud

A = b\,

La partícula comienza a moverse en un punto a una distancia b del punto de equilibrio, se acelera hacia éste, pasa por el punto de equilibrio con velocidad máxima y a partir de ahí comienza a frenarse, llegando a detenerse cuando se encuentra en el punto simétrico respecto del central. Por tanto, la máxima distancia del origen la alcanza en

x_\mathrm{max} = l_0+b\,

A partir de ahí retrocede, volviendo a detenerse en la posición inicial, reiniciándose el proceso.

Numéricamente en nuestro caso

x_\mathrm{max}=150\,\mathrm{mm}+50\,\mathrm{mm} = 200\,\mathrm{mm}

A este resultado se puede llegar también de manera sencilla empleando consideraciones energéticas. Para cualquier posición de la masa, ésta tiene una energía potencial elástica proporcional a la elongación al cuadrado

U = \frac{1}{2}k(x-l_0)^2

En ausencia de rozamiento, la energía mecánica se conserva, por lo que podemos igualar la energía mecánica inicial con la final. En el estado inicial, la velocidad de la masa es nula, por lo que su energía cinética vale 0, toda la energía mecánica es potencial y la partícula se halla en un punto de retorno.

En la posición de máximo alejamiento, la velocidad vuelve a ser nula, por lo que la partícula se encuentra en el otro punto de retorno, en el que la energía mecánica vuelve a ser solo potencial. Por tanto

\frac{1}{2}k(x(0)-l_0)^2 = \frac{1}{2}(x_\mathrm{max})-l_0)^2

de donde

b^2 = (x_\mathrm{max}-l_0)^2 \qquad \Rightarrow\qquad x_\mathrm{max} = l_0+b

La ecuación posee otra solución l0b correspondiente a la posición inicial.

3 Máxima distancia con rozamiento

Cuando el bloque roza con el suelo aparece una fuerza adicional. Esta nueva fuerza es la de rozamiento dinámico, proporcional a la fuerza normal aplicada. La fuerza normal aplicada es igual al peso en módulo y dirección, y sentido opuesto. Por tanto

|\vec{F}_r| = \mu|\vec{F}| = \mu m g = 0.1\cdot 5.0\cdot 9.81\,\mathrm{N} = 4.9\,\mathrm{N}

Esta fuerza es constante en módulo y dirección, pero no en sentido. La fuerza de rozamiento dinámico siempre se opone a la velocidad relativa, por lo tanto, cuando la partícula avance hacia la derecha, la fuerza de rozamiento irá hacia la izquierda y viceversa.

Para determinar la posición de máximo alejamiento debemos considerar una parte del movimiento en que x es siempre creciente, por lo que la fuerza de rozamiento irá siempre en el sentido de x decreciente y la ecuación de movimiento para la masa se escribe

ma = -k(x-l_0)-\mu mg\,

Esta ecuación es de nuevo la de un oscilador armónico, pero con un punto de equilibrio diferente del anterior. Podemos obtener la nueva posición de equilibrio viendo para que valor de x la aceleración se anula, o bien agrupando términos.

ma = -k(x-l_0)-\mu mg = -k\left(x-l_0+\frac{\mu mg}{k}\right) = -k\left(x-l\mathrm{eq}\right)\qquad\qquad l_\mathrm{eq}=l_0-\frac{\mu mg}{k}=145.1\,\mathrm{mm}

Puesto que, como antes, parte del reposo, el movimiento resultante es media oscilación alrededor del nuevo punto de equilibrio. A partir de ahí la fuerza de rozamiento cambia de sentido.

La amplitud de la oscilación igual a la diferencia entre la posición de equilibrio y la inicial. Esta distancia no es b sino una cantidad menor,

A = l_\mathrm{eq}-\left(l_0-b\right) = b-\frac{\mu mg}{k}

La nueva distancia máxima se alcanza cuando la masa llega al punto simétrico respecto a la nueva posición de equilibrio

x_\mathrm{max} = l_\mathrm{eq}+A = \left(l_0-\frac{\mu mg}{k}\right)+\left(b-\frac{\mu mg}{k}\right) = l_0+b-\frac{2\mu mg}{k}

Vemos que el alcance máximo se ve reducido en una cantidad proporcional al coeficiente de rozamiento. El valor numérico de esta cantidad es

x_\mathrm{max} = 150\,\mathrm{mm}+50\,\mathrm{mm} -\frac{2\cdot4.90\,\mathrm{N}}{1.0\,\mathrm{N}/\mathrm{mm}}=190.2\,\mathrm{mm}

En términos energéticos, lo que tenemos en este caso es que no se conserva la energía mecánica, por existir fuerzas no conservativas en el sistema. La disminución de la energía mecánica la da el trabajo debido a estas fuerzas

\Delta(K+U) = W_\mathrm{nc} = \int_{x_0}^x (-\mu mg)\,\mathrm{d}x

Por ser esta fuerza constante, puede salir de la integral y nos queda

\Delta(K + U) = -\mu m g(x-x_0) = -\mu m g(x-(l_0-b))\,

El máximo alcance se da cuando la energía cinética vuelve a ser cero. Esto nos da la ecuación para el balance energético

U_f-U_i = \frac{1}{2}k(x-l_0)^2-\frac{1}{2}kb^2 = -\mu m g\left(x-l_0+b\right)=W_\mathrm{nc}

Llegamos así a la ecuación de segundo grado

(x-l_0)^2 - b^2 + \frac{2\mu mg}{k}(x-l_0+b)=0

cuyas soluciones son

x = l_0 - b\qquad\qquad x = l_0+ b -\frac{2\mu mg}{k}

La primera es la posición inicial. La segunda es la posición de máximo alcance.

Gráficamente, en este caso la energía mecánica disminuye linealmente con la posición, por lo que en lugar de una recta horizontal tenemos una oblicua. Donde esta recta corta a la parábola es la posición de máximo alcance.

4 Posición de la segunda parada

Una vez que llega al punto de máximo alejamiento, la partícula retorna.

Si no existe rozamiento, la posición de mínima distancia es la misma que la inicial. El movimiento armónico continúa indefinidamente, oscilando entre la posición mínima y la máxima.

Cuando hay rozamiento, en cambio, las oscilaciones se van atenuando progresivamente. La razón es que la fuerza de rozamiento siempre se opone a la velocidad relativa. Esto quiere decir que en el retorno la ecuación de movimiento es

ma = -k(x-l_0)+\mu mg\,

donde ha cambiado el signo de la fuerza de rozamiento, respecto al camino de ida. Esto nos da una nueva posición de equilibrio, diferente de la anterior

ma = -k\left(x-l_0-\frac{\mu m g}{k}\right) = -k(x-l'_\mathrm{eq}) \qquad\qquad l'_\mathrm{eq}=l_0+\frac{\mu m g}{k}=154.9\,\mathrm{mm}

El movimiento en esta media oscilación es de nuevo armónico. La posición inicial en este medio periodo es la de máxima distancia calculada en el paratdo anterior. la distancia de este punto a la nueva posición de equilibrio es

A' =x_\mathrm{max}-l'_\mathrm{eq}=\left(l_0+b-\frac{2\mu mg}{k}\right)-\left(l_0+\frac{\mu m g}{k}\right) = b-\frac{3\mu m g}{k}

La mínima distancia a la pared se alcanza de nuevo en el punto simétrico respecto a esta posición inicial

x_\mathrm{min}=l'_\mathrm{eq}-A' = l_0-b+\frac{4\mu mg}{k}

con el valor numérico

x_\mathrm{min}= 150\,\mathrm{mm}-50\,\mathrm{mm}+4\cdot(4.9\,\mathrm{mm}) = 119.6\,\mathrm{mm}

A partir de ahí la partícula vuelve a avanzar, reduciéndose aun más la distancia máxima (porque parte de una posición más cercana a la de equilibrio. Los sucesivos máximos son

x_\mathrm{max}=\left\{l_0+b-\frac{2\mu m g}{k}, l_0+b-\frac{6\mu m g}{k}, l_0+b-\frac{10\mu m g}{k},\ldots\right\}

de valores

x_\mathrm{max} = \{190.2\,\mathrm{mm}, 170.6\,\mathrm{mm}, 151.0\,\mathrm{mm}, 131.4\,\mathrm{mm}\,\ldots\}

mientras que los sucesivos mínimos se hallan en

x_\mathrm{min}=\left\{l_0-b, l_0-b+\frac{4\mu m g}{k}, l_0-b+\frac{8\mu m g}{k},\ldots\right\}

con valores

x_\mathrm{min} = \{100.0\,\mathrm{mm},119.6\,\mathrm{mm}, 139.2\,\mathrm{mm}, 158.8\,\mathrm{mm}\,\ldots\}

Un rápido examen a estos valores muestra que llega un punto en que son imposibles, pues resulta un mínimo mayor que un máximo. La razón es que antes de llegar a esa situación la partícula se ha detenido definitivamente como veremos en la sección siguiente.

En términos energéticos, la energía mecánica continúa disminuyendo de manera lineal en cada ida y cada vuelta, ya que en cada caso la fuerza es constante en modulo y el trabajo que realiza proporcional a la distancia recorrida. Con esto se van hallando como en la sección anterior los sucesivos puntos de retorno.

Archivo:rozamiento-seco-resorte-06.png

5 Oscilaciones hasta la detención

Según al resultado anterior, la posición de máximo alcance va disminuyendo linealmente con el número de oscilaciones, mientras que la de mínima distancia va aumentando. Matemáticamente resulta que necesariamente estas dos rectas se cruzan y la posición de mínima distancia está más lejos que la de máxima distancia, lo cual es absurdo.

Esto no ocurre en la realidad, porque antes de que se produzca este cruce la masa se ha detenido por completo y ya no se mueve en un sentido u otro. El rozamiento ha conseguido detener por completo a la masa.

La posición de reposo permanente no es, como podría pensarse, el mínimo de energía potencial sino que puede estar a un lado u otro de él (aunque estará cerca). El proceso es como sigue: en cada oscilación la masa llega a pararse instantáneamente, en el máximo o en el mínimo. A partir de ahí vuelve a moverse, pero solo si la fuerza elástica es capaz de vencer a la fuerza de rozamiento estático. Si la fuerza elástica es menor que la fuerza máxima de rozamiento, no es capaz de arrancarla de nuevo y la masa se queda parada.

En los sucesivos máximos, la fuerza con la que el resorte intenta hacer retroceder a la masa es proporcional a la distancia entre esta posición y la longitud natural del resorte. Lo mismo ocurre en las posiciones de mínima distancia. Por tanto, se trata de ver en qué momento se cumple por primera vez que

k\left|x_\mathrm{min}-l_0\right| < F_r\qquad\qquad \mbox{o}\qquad\qquad k\left|x_\mathrm{max}-l_0\right| < F_r

La fuerza de rozamiento vale, según dijimos, 4.9 N. Para los sucesivos máximos y mínimos tenemos las fuerzas

x_\mathrm{min}\,(\mathrm{mm}) k|x_\mathrm{min}-l_0|\,(\mathrm{N}) x_\mathrm{max}\,(\mathrm{mm}) k|x_\mathrm{max}-l_0|\,(\mathrm{N})
100.0 50.0 190.2 40.2
119.6 30.4 170.6 20.6
139.2 10.8 151.0 1.0

Vemos que en el tercer máximo la fuerza recuperadora es de solo 1.0 N e inferior a la de rozamiento máximo. Por ello, la masa realiza solo dos oscilaciones y media y se queda finalmente parada a 1 mm de la posición de equilibrio.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 18:47, 22 ene 2012. - Esta página ha sido visitada 24.307 veces. - Aviso legal - Acerca de Laplace