1.11. Vectores con tres condiciones (Ex.Nov/11)
De Laplace
(Diferencias entre revisiones)
(→Solución) |
(→Solución) |
||
Línea 26: | Línea 26: | ||
Sustituyendo (2) y (3) en (1), se obtiene: | Sustituyendo (2) y (3) en (1), se obtiene: | ||
- | <center><math>a_x^2+36+9a_x^2=196\,\,\,\,\longrightarrow\,\,\,\,10\,a_x^2=160\,\,\,\,\longrightarrow\,\,\,\,a_x^2=16\,\,\,\,\longrightarrow\,\,\,\,a_x=\ | + | <center><math>a_x^2+36+9a_x^2=196\,\,\,\,\longrightarrow\,\,\,\,10\,a_x^2=160\,\,\,\,\longrightarrow\,\,\,\,a_x^2=16\,\,\,\,\longrightarrow\,\,\,\,\left\{ \begin{array}{l} a_x= 4 \,\,\,\,\longrightarrow\,\,\,\, a_z=-12 \\ a_x= -4 \,\,\,\,\longrightarrow\,\,\,\, a_z=12</math></center> |
[[Categoría:Problemas de vectores libres (G.I.T.I.)]] | [[Categoría:Problemas de vectores libres (G.I.T.I.)]] |
Revisión de 23:19 9 nov 2011
1 Enunciado
Determine todos los vectores libres que cumplen las tres siguientes condiciones:
1) Tener una longitud de 14 m.
2) Ser ortogonal al vector m.
3) Formar junto a los vectores m y
m un paralelepípedo de volumen igual a 6 m3.
2 Solución
Exigiremos a un vector genérico las tres condiciones dadas. Por comodidad, prescindiremos de las unidades hasta llegar a la solución final (son todas unidades del SI).
La longitud de un vector es su módulo. Así que el cuadrado del módulo de debe ser:
![a_x^2+a_y^2+a_z^2=(14)^2=196\,\,\,\,\,\,\,\, (1)](/wiki/images/math/9/8/9/989e9bebe7a38cce4f299c21f8313ab6.png)
La condición de ortogonalidad entre dos vectores viene dada por la nulidad de su producto escalar:
![(a_x\,\vec{\imath}+a_y\,\vec{\jmath}+a_z\,\vec{k})\cdot(3\,\vec{\imath}+\vec{k})=3a_x+a_z=0\,\,\,\,\longrightarrow\,\,\,\, a_z=-3a_x\,\,\,\,\,\,\,\, (2)](/wiki/images/math/e/2/b/e2b30b6784b65cd17214f54719d21e5d.png)
El volumen del paralelepípedo que tiene a tres vectores por aristas es igual al valor absoluto de su producto mixto:
![\left|(a_x\,\vec{\imath}+a_y\,\vec{\jmath}+a_z\,\vec{k})\cdot(\vec{\imath}\wedge\vec{k})\right|=|a_y|=6\,\,\,\,\longrightarrow\,\,\,\, a_y=\pm\, 6\,\,\,\,\,\,\,\, (3)](/wiki/images/math/7/5/1/751edcdc2898296f29d8175f03921763.png)
Sustituyendo (2) y (3) en (1), se obtiene: