Entrar Página Discusión Historial Go to the site toolbox

Dinámica de la partícula (GIE)

De Laplace

(Diferencias entre revisiones)
(Tipos de problemas en dinámica)
Línea 12: Línea 12:
* [[Energía y leyes de conservación (GIE)|Energía y leyes de conservación]]
* [[Energía y leyes de conservación (GIE)|Energía y leyes de conservación]]
* [[Equilibrio y estabilidad de la partícula (GIE)|Equilibrio y estabilidad de la partícula (GIE)]]
* [[Equilibrio y estabilidad de la partícula (GIE)|Equilibrio y estabilidad de la partícula (GIE)]]
-
 
-
==Tipos de problemas en dinámica==
 
-
La segunda ley de Newton relaciona la segunda derivada de la posición con la fuerza que actúa sobre la partícula, la cuál es a su vez una función de la posición, la velocidad y el tiempo;
 
-
 
-
<center><math>m\ddot{\vec{r}}=\vec{F}(\vec{r},\dot{\vec{r}},t)</math></center>
 
-
 
-
La solución de esta ecuación constituye el problema fundamental de la dinámica.
 
-
 
-
Dependiendo de cuáles sean nuestros datos y nuestras incógnitas, podemos tener diferentes clases de problemas:
 
-
 
-
* Si conocemos la expresión de la fuerza, junto con las condiciones iniciales del problema (posición y velocidad iniciales de la partícula), podemos emplearla para determinar la posición de la partícula en <math>t>0</math>. Es lo que se conoce como la dinámica de una partícula no vinculada. Como ejemplos típicos tenemos la caída libre, el oscilador armónico o el movimiento planetario.
 
-
* Si la posición de la partícula está restringida por alguna limitación geométrica o cinemática (por ejemplo, obligada a moverse sobre una superficie), entonces el problema consiste en la determinación del movimiento compatible con esas ligaduras, más la determinación de las fuerzas que producen dichas ligaduras (fuerzas de reacción vincular). Esta es la dinámica de la partícula vinculada.
 
-
* Si conocemos completamente el estado de movimiento de la partícula, podemos emplear la segunda ley de Newton para determinar la fuerza que actúa sobre la partícula. Este es el principio de los dinamómetros, tanto estáticos (con la partícula en equilibrio), como dinámicos (partícula en movimiento).
 
-
* Como caso particular podemos buscar en qué condiciones la partícula permanece en equilibrio y qué fuerzas actúan sobre ella en ese caso. Este es el objeto de la ''estática''.
 
==Determinación de fuerzas==
==Determinación de fuerzas==

Revisión de 16:48 9 sep 2011

Contenido

1 Introducción

La Dinámica es la parte de la Mecánica que estudia el movimiento atendiendo a las causas que lo producen.

En principio, la Dinámica trata de cualquier sistema, formado por un número arbitrario de partículas, interactuando entre sí y con el fuerzas externas.

En este tema nos limitaremos a considerar la dinámica de una sola partícula (o punto material), considerada como cuerpo sin dimensiones y con una masa finita. A partir del estudio de la dinámica de partículas individuales puede tratarse el estudio de los sistemas de partículas y la dinámica del sólido rígido.

Dada la extensión del tema, lo estructuraremos en varios apartados:

2 Determinación de fuerzas

En ocasiones, conocemos completamente el estado de movimiento o de reposo de una partícula, bien porque hemos medido su posición y velocidad, bien porque se encuentra sometida a tres vínculos independientes que definen de forma unívoca el estado de la partícula.

En ese caso, la segunda ley de Newton nos sirve como herramienta para determinar la fuerza que actúa sobre la partícula.

\vec{F}= m\vec{a}
Caso estático
En el caso de una partícula en reposo (caso estático) la aceleración es nula, por lo que la resultante de las fuerzas aplicadas debe anularse. Si conocemos el valor de todas las fuerzas salvo una, podemos usar esta ecuación para hallar la fuerza desconocida.
Este es el principio de los dinamómetros de resorte. Se aplica una fuerza que tensa un muelle. Se sabe que la fuerza que ejerce el resorte es proporcional a su elongación, por lo que debe cumplirse
-kx + F = 0\qquad\Rightarrow\qquad F = kx
Midiendo cuánto se estira el muelle tenemos el valor de la fuerza.
Caso dinámico
Si tenemos una partícula en un movimiento conocido, podemos determinar la aceleración y a partir de ella determinar la fuerza que está actuando sobre la partícula.
Por ejemplo, la tercera ley de Kepler establece que el cuadrado del periodo orbital de los planetas es proporcional al cubo de los radios de las órbitas.
T^2 = k R^3\,
Si suponemos órbitas circulares y que la fuerza es central (apunta permanentemente hacia el sol y sólo depende de la distancia al sol), entonces el movimiento es circular uniforme y
F = m\frac{v^2}{R} = \frac{m}{R}\left(\frac{2\pi R}{T}\right)^2 = \frac{4\pi^2 mR}{T^2} = \frac{4\pi^2m}{k}\,\frac{1}{R^2}
Por tanto, la fuerza gravitatoria ejercida por el Sol debe ir como la inversa del cuadrado de la distancia, tal como afirma la ley de la Gravitación Universal.

3 Estática de la partícula

La estática es la parte de la mecánica que trata de las situaciones de equilibrio de los cuerpos. Un estado de equilibrio es aquél en el que el sistema se encuentra en reposo, permaneciendo en él indefinidamente.

El análisis del equilibrio de un sistema se compone de dos elementos:

  • Establecer las condiciones en las que se produce el estado del equilibrio
  • Establecer la estabilidad del equilibrio, esto es, determinar si el sistema, separado de su estado de equilibrio, vuelve a él o por el contrario se aleja de él.

3.1 Condición de equilibrio

Para el caso de una partícula material, la condición de equilibrio es una consecuencia inmediata de la segunda ley de Newton. Si la partícula se encuentra en un estado de reposo permanente, su aceleración es nula y por tanto

\vec{F}=m\vec{a}=\vec{0}

La condición de equilibrio de una partícula es que se anule la resultante de las fuerzas que actúan sobre ella.

Cuando tenemos fuerzas dependientes de la posición, este principio sirve para determinar las posiciones de equilibrio, mediante la solución de la ecuación

\vec{F}(\vec{r},\vec{0})=\vec{0}

donde el segundo argumento de la fuerza es la velocidad, que será nula en una posición de equilibrio.

Por ejemplo, supongamos una masa sujeta a la acción de la gravedad y que cuelga de un resorte vertical, que verifica la ley de Hooke. Sumando las componentes verticales del peso y de la fuerza elástica tenemos que, en el equilibrio

0 = -mg + k(l-l_0)\,   \Rightarrow   l = l_0+\frac{mg}{k}

Si lo que se conoce es la posición de equilibrio y parte de las fuerzas actuantes, la condición de equilibrio sirve para determinar la fuerza restante.

3.2 Estabilidad del equilibrio

El que una posición sea de equilibrio no garantiza que, en una situación real, el sistema vaya a permanecer en ella indefinidamente. La razón es que siempre existen pequeñas fluctuaciones en las fuerzas, que pueden separar levemente al sistema del equilibrio. Para que el sistema permanezca en la misma posición, no basta con que su posición sea de equilibrio. Éste debe ser estable.

Consideremos, por ejemplo, un péndulo simple formado por una masa que cuelga de un punto de anclaje sujeto por una barra rígida sin masa. Este sistema posee dos posiciones de equilibrio: que la masa está en el punto más bajo del péndulo, o que esté en el punto más alto. Es claro que las dos posiciones no son equivalentes. Mientras que en la posición inferior la masa tiende a permanecer en ella, si se encuentra en el extremo superior cualquier pequeña perturbación hace que la masa caiga.

Archivo:pendulo-estable.png Archivo:pendulo-inestable.png
Estable Inestable

Los puntos de equilibrio se clasifican en:

Estables
Ante una pequeña perturbación, tienden a retornar a la posición de equilibrio. El ejemplo representativo lo supone una partícula que rueda dentro de un cuenco, o una masa sujeta a un resorte.
Inestables
Una pequeña perturbación separa a la masa del equilibrio, y ésta tiende a alejarse de esta posición. Es el caso de una masa situada en lo alto de una cima o del péndulo invertido. También es el caso de una partícula en el interior de un tubo en rotación. Cuando se separa del centro, la inexistencia de una fuerza centrípeta hace que se aleje aun más.
Indiferente
La partícula no tiende a retornar a la posición de equilibrio, pero tampoco a alejarse de ella. Es el caso de una bola situada sobre una mesa horizontal.
Archivo:equilibrio-estable.png Archivo:equilibrio-inestable.png Archivo:equilibrio-indiferente.png
Estable Inestable Indiferente

La clasificación se complica en 3 dimensiones por el hecho de que una posición de equilibrio puede ser estable respecto a fuerzas aplicadas en una dirección e inestable frente a otras aplicadas en una diferente.

También puede ocurrir que una misma posición de equilibrio pueda ser estable para ciertos valores de los parámetros (por ejemplo, la masa de la partícula) e inestable para valores diferentes.

La forma más directa de abordar el problema de la estabilidad consiste en suponer una posición muy próxima a la de equilibrio y analizar el sentido de la fuerza para un desplazamiento dado. Por ejemplo, en el caso del resorte que cuelga verticalmente hacemos

l = l_\mathrm{eq}+x = l_0+\frac{mg}{k}+x   \Rightarrow   F = -kx\,

Esto quiere decir que cuando x es positivo, la fuerza es negativa, es decir, tiende a disminuir |x|. Igualmente, si x es negativo, F es positiva, con lo que también tiende a disminuir |x|. El punto de equilibrio es, por tanto, estable.

Una de las herramientas más intuitivas para el análisis de la estabilidad es el uso de las curvas de energía potencial, que veremos al analizar la ley de conservación de la energía mecánica.


4 Problemas

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace