6.8. Barra horizontal apoyada en disco
De Laplace
Línea 17: | Línea 17: | ||
Al ser el contacto entre el disco y el eje horizontal una rodadura sin deslizamiento, el movimiento relativo es una rotación en torno a este punto. Por ello | Al ser el contacto entre el disco y el eje horizontal una rodadura sin deslizamiento, el movimiento relativo es una rotación en torno a este punto. Por ello | ||
- | <center><math>\vec{v}^O_{01}=\omega_{01}\vec{k}\times\overrightarrow{ | + | <center><math>\vec{v}^O_{01}=\omega_{01}\vec{k}\times\overrightarrow{CO}</math></center> |
La velocidad angular la obtenemos de que podemos hallar la velocidad del punto B, de contacto del disco y la barra, en el movimiento {01}, por ser este contacto también una rodadura sin deslizamiento | La velocidad angular la obtenemos de que podemos hallar la velocidad del punto B, de contacto del disco y la barra, en el movimiento {01}, por ser este contacto también una rodadura sin deslizamiento | ||
- | <center><math>\vec{v}^ | + | <center><math>\vec{v}^A_{01}=\overbrace{\vec{v}^A_{02}}^{=\vec{0}}+\vec{v}^A_{21}=v_0\vec{\imath}_1</math></center> |
La velocidad de este punto cumple igualmente | La velocidad de este punto cumple igualmente | ||
- | <center><math>\vec{v}^ | + | <center><math>\vec{v}^A_{01}=\omega_{01}\vec{k}\times\overrightarrow{CA}=\omega_{01}\vec{k}\times(2R\vec{\jmath}_1)=-2R\omega_{01}\vec{\imath}_1</math></center> |
Igualando las dos expresiones obtenemos la velocidad angular | Igualando las dos expresiones obtenemos la velocidad angular | ||
Línea 44: | Línea 44: | ||
<center><math>\vec{v}^O_{20}=\vec{v}^O_{21}+\vec{v}^O_{10}=v_0\vec{\imath}_0-\frac{v_0}{2}\vec{\imath}_1=\frac{v_0}{2}\vec{\imath}_1</math></center> | <center><math>\vec{v}^O_{20}=\vec{v}^O_{21}+\vec{v}^O_{10}=v_0\vec{\imath}_0-\frac{v_0}{2}\vec{\imath}_1=\frac{v_0}{2}\vec{\imath}_1</math></center> | ||
- | + | ||
==Aceleración== | ==Aceleración== | ||
+ | La aceleración de A la podemos hallar mediante la expresión del campo de aceleraciones | ||
+ | \vec{a}^A_{20}= | ||
[[Categoría:Problemas de movimiento plano (G.I.T.I.)]] | [[Categoría:Problemas de movimiento plano (G.I.T.I.)]] |
Revisión de 18:12 9 ene 2011
Contenido |
1 Enunciado
El sistema de la figura consta de un disco (sólido “0”), de centro O y radio R, que rueda sin deslizar sobre el eje horizontal O1X1 de la escuadra fija O1X1Y1 (sólido “1”); y de una barra de longitud indefinida (sólido “2”), que se desplaza horizontalmente con velocidad constante v0, manteniéndose siempre en contacto tangente con el perímetro del disco (punto A) y sin deslizar sobre éste. Se pide:
- Reducciones cinemáticas de los movimientos {21}, {01} y {20} en el centro del disco (punto O), es decir: , y .
- Aceleración relativa barra-disco del punto de contacto A, es decir: .
2 Reducciones cinemáticas
2.1 Movimiento {21}
La barra “2” efectúa un movimiento de traslación respecto al sólido “1”, por lo que la velocidad angular de este movimiento es nula y la velocidad de traslación es la misma para todos los puntos, en particular el centro del disco, O.
2.2 Movimiento {01}
Al ser el contacto entre el disco y el eje horizontal una rodadura sin deslizamiento, el movimiento relativo es una rotación en torno a este punto. Por ello
La velocidad angular la obtenemos de que podemos hallar la velocidad del punto B, de contacto del disco y la barra, en el movimiento {01}, por ser este contacto también una rodadura sin deslizamiento
La velocidad de este punto cumple igualmente
Igualando las dos expresiones obtenemos la velocidad angular
y la velocidad del punto O
2.3 Movimiento {20}
Una vez que tenemos dos de las reducciones cinemáticas, podemos hallar la tercera mediante la composición de movimientos. Para la velocidad angular
y para la lineal
3 Aceleración
La aceleración de A la podemos hallar mediante la expresión del campo de aceleraciones
\vec{a}^A_{20}=