Entrar Página Discusión Historial Go to the site toolbox

Movimiento helicoidal de un sólido rígido

De Laplace

(Diferencias entre revisiones)
(Dirección y sentido de la velocidad)
(Dirección y sentido de la velocidad)
 
(Una edición intermedia no se muestra.)
Línea 66: Línea 66:
<center><math>\mathrm{tg}\,\theta = \frac{\omega d}{v_0}</math></center>
<center><math>\mathrm{tg}\,\theta = \frac{\omega d}{v_0}</math></center>
-
Este ángulo es nulo si <math>d=0</math>, lo que de nuevo nos dice que en los puntos del eje la velocidad es paralela a la velocidad angular. A medida que crece la distancia al eje, crece el ángulo formado entre la velocidad y la velocidad angular, tendiendo hacia la ortogonalidad cuando la distancia al eje se hace infinita.
+
Este ángulo es 0 o 180º si <math>d=0</math>, lo que de nuevo nos dice que en los puntos del eje la velocidad es paralela a la velocidad angular. El ángulo varía a medida que aumenta la distancia al eje, tendiendo hacia la ortogonalidad pero sin llegar a alcanzarla nunca salvo en el infinito.
Como en el caso de la rotación pura, dos puntos situados sobre la misma vertical tienen la misma velocidad, aunque en este caso el movimiento no esté limitado a un plano.
Como en el caso de la rotación pura, dos puntos situados sobre la misma vertical tienen la misma velocidad, aunque en este caso el movimiento no esté limitado a un plano.

última version al 12:11 30 oct 2010

Contenido

1 Introducción

El campo de velocidades de un sólido rígido tiene la forma

\vec{v}(\vec{r}) = \vec{v}_0+\vec{\omega}\times\vec{r}

El movimiento helicoidal instantáneo se da cuando ni \vec{v}_0 ni \vec{\omega} son nulos, pero sí paralelos:

\vec{v}_0 = \alpha\vec{\omega}

Este campo de velocidades posee una serie de propiedades:

  • Existe una recta, paralela a la velocidad angular, tal que la velocidad de sus puntos posee módulo mínimo y dirección la de la propia recta (eje instantáneo de rotación y mínimo deslizamiento, EIRMD).
  • El EIRMD pasa por el origen de coordenadas y tiene la dirección de la velocidad angular.
  • Todos los puntos situados a la misma distancia de este eje poseen la misma celeridad.
  • La proyección de la velocidad de cada punto sobre la velocidad angular es la misma para todos los puntos.
  • La velocidad de todos los puntos situados a la misma distancia forma el mismo ángulo con la velocidad angular.
  • El sentido de la velocidad cumple la regla de la mano derecha respecto a la velocidad angular.

2 Eje instantáneo de rotación y mínimo deslizamiento

Consideremos en primer lugar la velocidad del origen de coordenadas.

\vec{v}(\vec{0}) = \vec{v}_0

Por tanto \vec{v}_0 representa la velocidad con la que se mueve el origen de coordenadas.

Si ahora consideramos un punto situado en la recta que pasa por el origen y con la dirección dada por la velocidad angular

\vec{r}=\lambda\vec{\omega}

La velocidad de estos puntos es

\vec{v}(\lambda\vec{\omega})=\vec{v}_0+\vec{\omega}\times(\lambda\vec{\omega})=\vec{v}_0

esto es, todos se mueven con la misma velocidad y además esta velocidad va en la dirección de la recta que une los puntos.

3 Celeridad de un punto

Si ahora consideramos un punto fuera de esta recta y situado a una distancia d de ella, su velocidad será

\vec{v}=\overbrace{\vec{v}_0}^{\parallel\vec{\omega}} +\overbrace{\vec{\omega}\times\vec{r}}^{\perp\vec{\omega}}

Al ser las dos componentes perpendiculares entre sí, el módulo de este vector es

v = \sqrt{v_0^2+ |\vec{\omega}\times\vec{r}|} = \sqrt{v_0^2+\omega^2d^2}

De este resultado extraemos dos conclusiones:

  • Todos los puntos situados a la misma distancia del eje tienen la misma celeridad.
  • Esta celeridad es mínima en el propio eje (d = 0).

4 Componente paralela de la velocidad

La proyección de la velocidad en la dirección de la velocidad angular es

\mathrm{proy}_\parallel\vec{v}=\frac{\vec{v}\cdot\vec{\omega}}{\omega}=\frac{\vec{v}_0\cdot\vec{\omega}}{\omega}

Al depender solo de los vectores \vec{v}_0 y \vec{\omega}, esta proyección es la misma para todos los puntos. En este caso, además, al tratarse vectores paralelos

\mathrm{proy}_\parallel\vec{v}=\frac{v_0\omega}{\omega}=v_0

5 Dirección y sentido de la velocidad

En cuanto al ángulo que forma la velocidad con la velocidad angular tenemos

\cos\theta = \frac{\vec{v}\cdot\vec{\omega}}{v\omega}=\frac{v_0\omega}{\sqrt{v_0^2+\omega^2d^2}\omega}=\frac{v_0}{\sqrt{v_0^2+\omega^2d^2}}

Equivalentemente, el ángulo verifica

\mathrm{tg}\,\theta = \frac{\omega d}{v_0}

Este ángulo es 0 o 180º si d = 0, lo que de nuevo nos dice que en los puntos del eje la velocidad es paralela a la velocidad angular. El ángulo varía a medida que aumenta la distancia al eje, tendiendo hacia la ortogonalidad pero sin llegar a alcanzarla nunca salvo en el infinito.

Como en el caso de la rotación pura, dos puntos situados sobre la misma vertical tienen la misma velocidad, aunque en este caso el movimiento no esté limitado a un plano.

\vec{r}_2 = \vec{r}_1+\lambda\omega   \Rightarrow   \vec{v}(\vec{r}_2)=\vec{v}(\vec{r}_1)

Por último, el sentido de la velocidad cumple la regla de la mano derecha respecto a la velocidad angular.

Este movimiento se denomina movimiento helicoidal (o de tornillo) porque si uno traza las líneas de corriente (tangentes a la velocidad en cada punto), obtiene hélices que avanzan a la vez que giran en torno al EIRMD. Esto NO quiere decir que el movimiento de cada partícula sea helicoidal, ya que

\vec{v}_0=\vec{v}_0(t)        \vec{\omega}=\vec{\omega}(t)

y por tanto, el EIRMD y la dirección de la velocidad de cada partícula puede cambiar continuamente.

6 Generalidad del movimiento helicoidal

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 12:11, 30 oct 2010. - Esta página ha sido visitada 4.297 veces. - Aviso legal - Acerca de Laplace