Entrar Página Discusión Historial Go to the site toolbox

Espiral logarítmica

De Laplace

(Diferencias entre revisiones)
(Ley horaria)
(Enunciado)
Línea 2: Línea 2:
Una partícula recorre la espiral logarítmica de ecuación
Una partícula recorre la espiral logarítmica de ecuación
-
<center><math>\vec{r} = R (\cos(\theta)\vec{\imath}+\,\mathrm{sen}(\theta)\vec{\jmath})\mathrm{e}^{-\theta\,\mathrm{tg}\,\alpha}</math></center>
+
<center><math>\vec{r} = b (\cos(\theta)\vec{\imath}+\,\mathrm{sen}(\theta)\vec{\jmath})\mathrm{e}^{-\theta\,\mathrm{cotg}\,\alpha}</math></center>
-
donde <math>R</math> y <math>\alpha</math> son constantes. El movimiento es uniforme a lo largo de la curva, con celeridad constante <math>v_0</math>. En el instante inicial la partícula se encuentra en <math>\theta=0</math>
+
donde <math>b</math> y <math>\alpha</math> son constantes. El movimiento es uniforme a lo largo de la curva, con celeridad constante <math>v_0</math>. En el instante inicial la partícula se encuentra en <math>\theta=0</math>
# Determine la ley horaria <math>\theta = \theta(t)</math>.
# Determine la ley horaria <math>\theta = \theta(t)</math>.

Revisión de 08:31 25 jun 2010

Contenido

1 Enunciado

Una partícula recorre la espiral logarítmica de ecuación

\vec{r} = b (\cos(\theta)\vec{\imath}+\,\mathrm{sen}(\theta)\vec{\jmath})\mathrm{e}^{-\theta\,\mathrm{cotg}\,\alpha}

donde b y α son constantes. El movimiento es uniforme a lo largo de la curva, con celeridad constante v0. En el instante inicial la partícula se encuentra en θ = 0

  1. Determine la ley horaria θ = θ(t).
  2. Calcule el tiempo que tarda en llegar a \vec{r}=\vec{0}. ¿Cuántas vueltas da para ello?
  3. Halle el vector aceleración y sus componentes intrínsecas en cada punto de la trayectoria.
  4. Determine la posición de los centros de curvatura de este movimiento.

2 Ley horaria

Para hallar la ley horaria θ = θ(t) aplicamos que el movimiento es uniforme y por tanto

\left|\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}\right| = |\vec{v}| = v_0

Sin embargo, lo que se nos da es la trayectoria como función de la coordenada θ y la velocidad no es la derivada de la posición respecto a θ, sino respecto al tiempo. Para relacionar las dos cosas aplicamos la regla de la cadena

\vec{v}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta}\,\frac{\mathrm{d}\theta}{\mathrm{d}t}=\frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta}\dot{\theta}

Aquí \dot{\theta} =\mathrm{d}\theta/\mathrm{d}t es una función que debemos determinar.

Tomando módulos

v_0= \left|\vec{v}\right|= \left|\frac{\mathrm{d}\vec{r}}{\mathrm{d}\theta}\right|\dot{\theta}

3 Tiempo en llegar al origen

4 Aceleración

5 Centros de curvatura

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace