Entrar Página Discusión Historial Go to the site toolbox

Espira cuadrada rotatoria en un campo magnético

De Laplace

(Diferencias entre revisiones)
(Cálculo de la intensidad)
(Cálculo de la intensidad)
Línea 17: Línea 17:
por ser <math>\mathbf{B}_0</math> uniforme. El producto escalar es igual al producto de los módulos por el coseno del ángulo que forman, el cual varía uniformemente con el tiempo
por ser <math>\mathbf{B}_0</math> uniforme. El producto escalar es igual al producto de los módulos por el coseno del ángulo que forman, el cual varía uniformemente con el tiempo
-
<center><math>\Phi_m=B_0a^2\cos(\omega t)</math></center>
+
<center><math>\Phi_m=B_0a^2\cos(\omega t)\,</math></center>
Derivando obtenemos la fuerza electromotriz.
Derivando obtenemos la fuerza electromotriz.
Línea 28: Línea 28:
-
<center><math>\mathcal{E}_0=0.201\,\mathrm{V}</math></center>
+
<center><math>\mathcal{E}_0=0.20\,\mathrm{V}</math></center>
La corriente que circula por la espira es igual a
La corriente que circula por la espira es igual a
-
<math>I=\frac{\mathcal{E}}{R}=\frac{B_0a^2\omega}{R}\mathrm{sen}(\omega t)</math>
+
<center><math>I=\frac{\mathcal{E}}{R}=\frac{B_0a^2\omega}{R}\mathrm{sen}(\omega t)</math></center>
donde la resistencia vale
donde la resistencia vale
-
<center><math>R=\frac{4a}{\sigma A} = </math></center>
+
<center><math>R=\frac{4a}{\sigma A} = 2.7\,\mathrm{m}\Omega</math></center>
 +
 
 +
y la amplitud de la intensidad
 +
 
 +
<center><math>I_0=\frac{\mathcal{E}_0}{R}=\frac{B_0aA\sigma\omega}{4} = 74\,\mathrm{A}</math></center>
===Cálculo de la potencia===
===Cálculo de la potencia===
[[Categoría:Problemas de inducción electromagnética]]
[[Categoría:Problemas de inducción electromagnética]]

Revisión de 07:48 24 may 2008

Contenido

1 Enunciado

Una espira cuadrada de lado a=2\,\mathrm{cm}, de hilo de cobre de sección A=0.5\,\mathrm{mm}^2 gira con frecuencia f=400\,\mathrm{Hz} en el interior de un campo magnético uniforme de módulo B_0=200\,\mathrm{mT}. El eje de giro es perpendicular al campo magnético.
  1. Determine la corriente que se induce en la espira.
  2. Calcule la potencia instantánea disipada en la espira y la energía total disipada en un periodo de giro.

2 Solución

2.1 Cálculo de la intensidad

Éste es un ejemplo elemental de generador de corriente alterna. La corriente se obtiene por aplicación directa de la ley de Faraday
\mathcal{E}=-\frac{\mathrm{d}\Phi_m}{\mathrm{d}t}

El flujo magnético es igual a

\Phi_m=\int_S\mathbf{B}\cdot\mathrm{d}\mathbf{S}=\mathbf{B}_0\cdot\mathbf{n}S

por ser \mathbf{B}_0 uniforme. El producto escalar es igual al producto de los módulos por el coseno del ángulo que forman, el cual varía uniformemente con el tiempo

\Phi_m=B_0a^2\cos(\omega t)\,

Derivando obtenemos la fuerza electromotriz.

\mathcal{E}=B_0a^2\omega\,\mathrm{sen}(\omega t)=\mathcal{E}_0\mathrm{sen}(\omega t)

Vemos que este sistema se comporta como un generador de corriente alterna. Sustituyendo los valores numéricos

\omega = 800\pi\,\mathrm{s}^{-1} = 2513\,\mathrm{s}^{-1}\,


\mathcal{E}_0=0.20\,\mathrm{V}

La corriente que circula por la espira es igual a

I=\frac{\mathcal{E}}{R}=\frac{B_0a^2\omega}{R}\mathrm{sen}(\omega t)

donde la resistencia vale

R=\frac{4a}{\sigma A} = 2.7\,\mathrm{m}\Omega

y la amplitud de la intensidad

I_0=\frac{\mathcal{E}_0}{R}=\frac{B_0aA\sigma\omega}{4} = 74\,\mathrm{A}

2.2 Cálculo de la potencia

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace