Entrar Página Discusión Historial Go to the site toolbox

Energía potencial

De Laplace

(Diferencias entre revisiones)
(Cálculo de la fuerza a partir del potencial=)
(Fuerzas conservativas)
Línea 5: Línea 5:
<center><math>W_{A\to B}=\int_{\!\!\!\!\!\!\!\!\!\!\!\! C_1\ A}^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}=\int_{\!\!\!\!\!\!\!\!\!\!\!\! C_2\ A}^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}</math></center>
<center><math>W_{A\to B}=\int_{\!\!\!\!\!\!\!\!\!\!\!\! C_1\ A}^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}=\int_{\!\!\!\!\!\!\!\!\!\!\!\! C_2\ A}^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}</math></center>
 +
 +
para una fuerza conservativa, por tanto, podemos omitir la indicación de la curva y escribir simplemente
 +
 +
<center><math>W_{A\to B}= \int_A^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}</math></center>
 +
 +
donde la integral se calcula por un camino arbitrario. Eso sí, alguno hay que elegir, sea el que sea.
==Energía potencial==
==Energía potencial==

Revisión de 22:35 15 feb 2010

Contenido

1 Fuerzas conservativas

El trabajo realizado por una fuerza cuando una partícula se mueve desde un punto A a un punto B depende en general del camino recorrido. Por ejemplo, una fuerza de rozamiento realiza un trabajo mayor cuanto mayor sea la distancia recorrida, aunque los puntos iniciales y finales sean los mismos en todos los caminos.

Existe una clase de fuerzas, denominadas fuerzas conservativas, para las cuales el trabajo entre dos puntos es independiente del camino que se emplea para ir de uno a otro

W_{A\to B}=\int_{\!\!\!\!\!\!\!\!\!\!\!\! C_1\ A}^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}=\int_{\!\!\!\!\!\!\!\!\!\!\!\! C_2\ A}^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}

para una fuerza conservativa, por tanto, podemos omitir la indicación de la curva y escribir simplemente

W_{A\to B}= \int_A^B \mathbf{F}\cdot\mathrm{d}\mathbf{r}

donde la integral se calcula por un camino arbitrario. Eso sí, alguno hay que elegir, sea el que sea.

2 Energía potencial

Esto permite definir una función denominada energía potencial como el trabajo, cambiado de signo, para ir desde un punto fijo (el origen de potencial) hasta un punto fijo

U(\mathbf{r})=-\int_{\mathbf{r}_0}^\mathbf{r} \mathbf{F}\cdot\mathrm{d}\mathbf{r}

3 Ejemplos

3.1 Peso

3.2 Ley de Hooke

3.3 Fuerza gravitatoria

Entre los casos importantes de fuerzas conservativas tenemos:

  • El peso, para el cual, si el origen de potencial es la superficie terrestre y z la altura sobre ella:
U(\mathbf{r}) = mg z\,
  • Más en general la fuerza gravitatoria producida por un cuerpo fijo sobre otro, tomando como origen de potencial el infinito, tiene una energía potencial
U(\mathbf{r}) = -\frac{GMm}{|\mathbf{r}|}\,
  • El oscilador armónico, que cumple, tomando el origen de potencial en el punto de equilibrio
U(\mathbf{r}) = \frac{1}{2}k|\mathbf{r}|^2\,

4 Cálculo de la fuerza a partir del potencial

Conocida la energía potencial, puede hallarse la fuerza calculando su gradiente:

\mathbf{F}=-\nabla U = -\frac{\partial U}{\partial x}\mathbf{i}-\frac{\partial U}{\partial y}\mathbf{j}-\frac{\partial U}{\partial z}\mathbf{k}

que en el caso de una función dependiente de una sola coordenada se reduce a una derivada ordinaria.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace