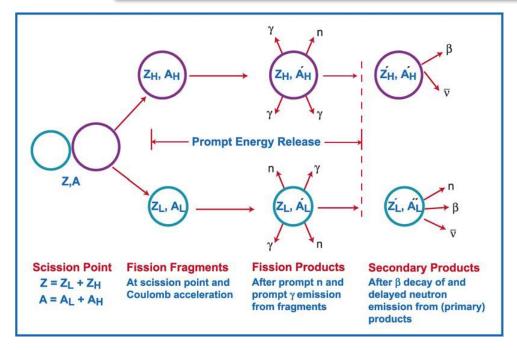


Tecnologías nucleares

Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla

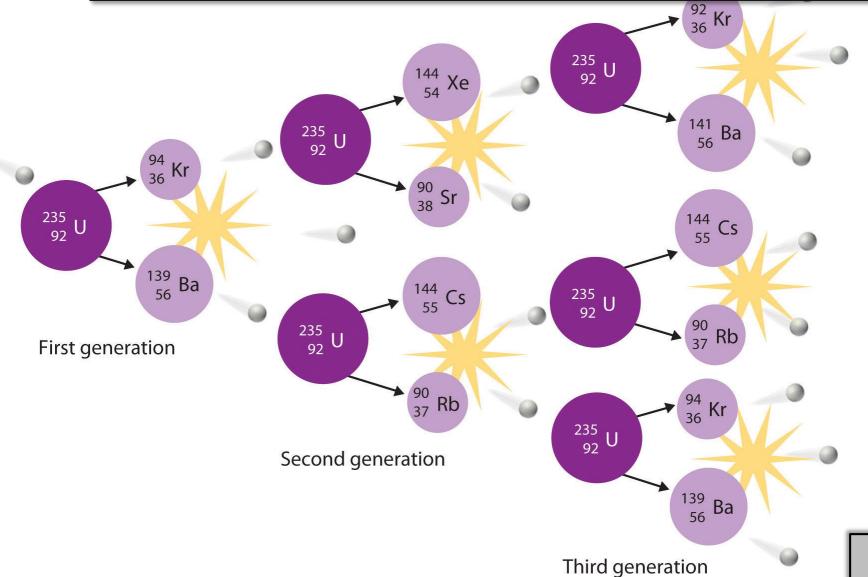
Parte 2: Neutrones y energía en un reactor nuclear



Cada nueva fisión libera energía de diversas formas

Energía liberada en una fisión (en promedio)

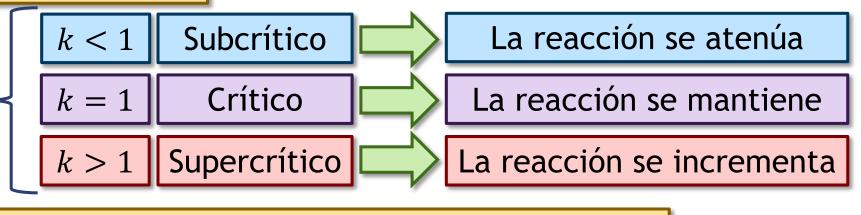
Inmediata (MeV)
Energía cinética de fragmentos	167
Neutrones de fisión	5
Rayos γ	5
γ por captura n	10
Total	187


Diferida (MeV)				
Partículas β	7			
γ de los productos	6			
Neutrinos (v)	10			
Total	23			

En régimen normal, ~6% de la energía procede de los productos

Importante en la parada

Reacciones en cadena: cada nueva fisión libera calor



Factor de multiplicación

El factor de multiplicación es el fundamental

 $k = \frac{\text{número de neutrones en una generación}}{\text{número de neutrones en la precedente}}$

Regulando k se controla la potencia del reactor

En régimen estacionario debe ser $k \simeq 1$

k depende de:

Producción

Moderación

Absorción

Controlable

Fuga

© 2016, Antonio González

Fernández

Procesos neutrónicos

Producción

Fisión nuclear

Moderación

Paso de neutrones rápidos a térmicos

Difusión

Flujo de neutrones dentro del material

Fuga

Salida de neutrones al exterior del material

Captura

Absorción por el combustible o resto de materiales

Elementos físiles y fisionables. No es lo mismo.

Un elemento físil es el que puede experimentar fisión.

¿Y uno fisionable?

También

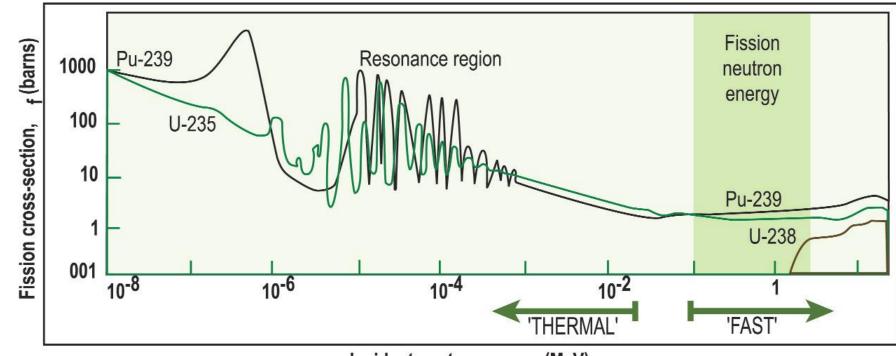
Físil: Núclidos para los cuales la energía de ligadura del último neutrón excede el umbral crítico de fisión

Experimentan fisión por neutrones térmicos (energías ~ meV)

²³⁵₉₂**U**

²³⁹₉₄Pu

Fisionable: Núclidos en los cuales la energía de ligadura del último neutrón no excede el umbral de fisión, pero pueden fisionar con energía extra

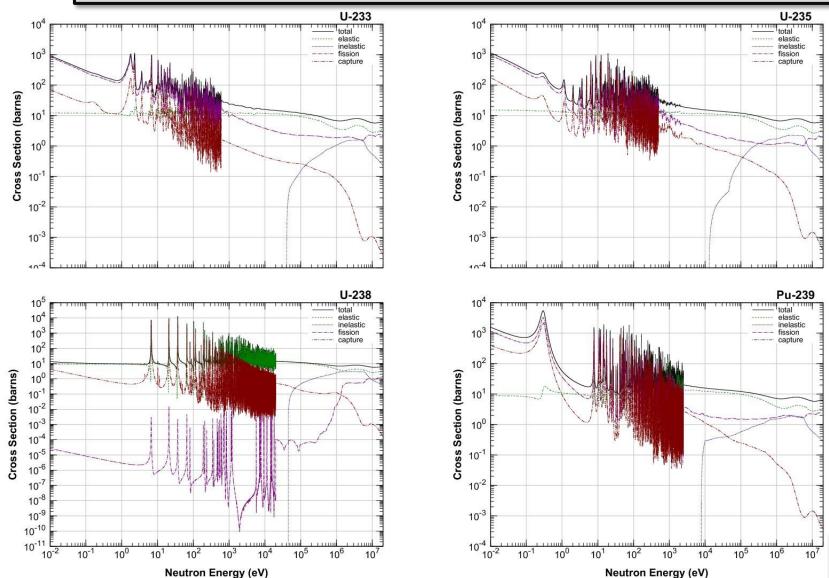

¿El Pb es fisionable?

"Energía extra" no es ilimitada: es la de los neutrones producto de fisión (~ 2MeV)

²³⁸U

Elementos físiles: los que experimentan fisión por neutrones térmicos

Incident neutron energy (MeV)



Sirven como combustible de reactores térmicos, pero solo el ²³⁵U existe en la naturaleza en cantidades apreciables (0.7%)

Comparación de secciones eficaces para elementos físiles y fisionables

El factor de reproducción da los neutrones generados por fisión

Factor de reproducción

$$\eta = \frac{n^{\circ} \text{ de neutrones rápidos generados}}{n^{\circ} \text{ de neutrones absorbidos}}$$

Es una función de la energía de los neutrones

En cada fisión inducida se producen en promedio v neutrones

$$\eta \neq \nu$$

Para el U-235 y con neutrones térmicos $\nu \sim 2.47$

No todos los neutrones absorbidos producen nuevas fisiones

Para el U-235 y con neutrones térmicos $\eta \sim 2.08$

$$\eta = \frac{\Sigma_f \phi^U \nu}{\Sigma_a \phi^U}$$

2016, Antonio González

 Σ_f : sección eficaz de fisión

 Σ_a : sección eficaz de absorción

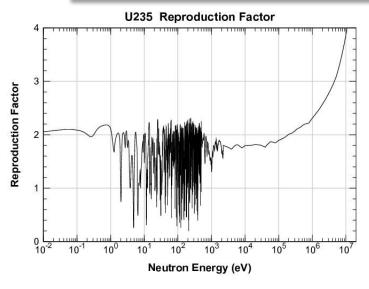
 $\phi^U = nv$: flujo

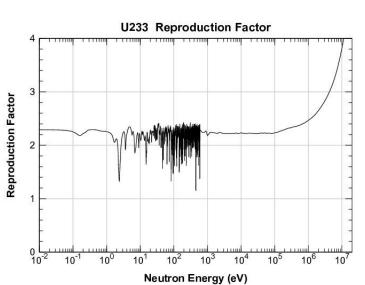
10

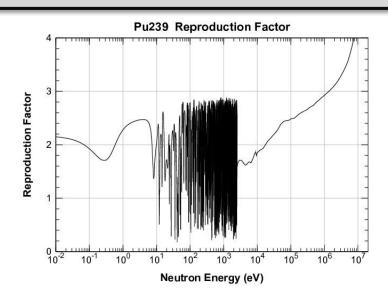
El factor de reproducción da los neutrones generados por fisión

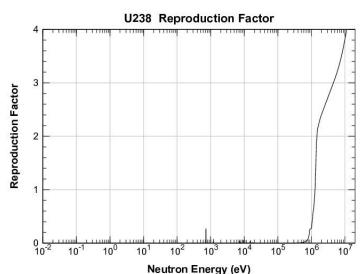
 η y ν son función de la energía de los neutrones

	Térmi	co (meV)	Rápidos (MeV)		
	ν	η	ν	η	
235U	2.42	2.07	2.51	2.40	
233U	2.49	2.29	2.58	2.40	
²³⁹ Pu	2.93	2.15	3.04	2.90	
238U	0	0	2.6	2.20	


Fuente: DOE 1-2


Dependiendo de los valores se elige el combustible adecuado para el reactor La composición del combustible cambia con el tiempo





Dependencia de n con la energía

Enriquecimiento de una mezcla

Si hay una mezcla, hay que tener en cuenta las contribuciones de cada componente

x: fracción de masa de ²³⁵U (enriquecimiento)

$$x = \frac{m_{235}}{m_{235} + m_{238}} = \frac{235N_{235}}{235N_{235} + 238N_{238}}$$

$$N_{235} + N_{238} = N_0$$

$$N_{235} = \frac{238x}{235 + 3x} N_0 \sim x N_0$$

$$N_{238} = \frac{235(1-x)}{235+3x}N_0$$

	Natural	Enriquecido	Armamento	
x	0.72%	3%	90%	

Si hay más de un componente, todas las absorciones y fisiones cuentan

Si hay una mezcla, hay que tener en cuenta las contribuciones de cada componente

$$\eta = \frac{\sum_{i} N_{i} \sigma_{fi} \nu_{i}}{\sum_{i} N_{i} \sigma_{ai}}$$

	235U	238 U
$\sigma_{\!f}$	582 barn	0
ν	2.42	0
σ_a	694 barn	2.71 barn

Térmicos

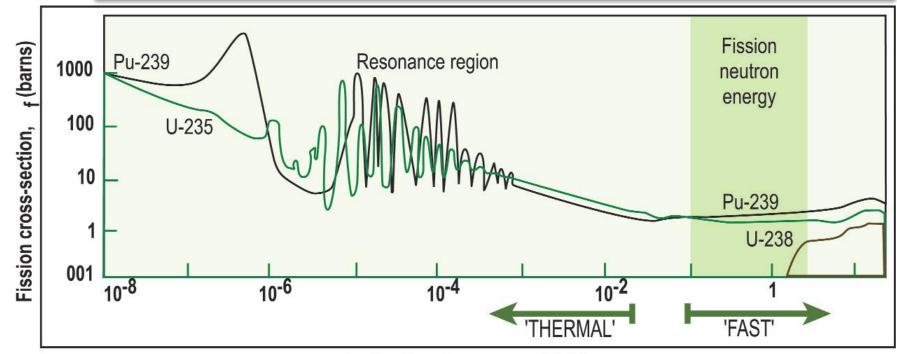
Para el ²³⁵U y ²³⁸U

$\eta =$		$N_{235}\sigma_{f235}\nu_{235}$
′/	_	$\overline{N_{235}\sigma_{a235} + N_{238}\sigma_{a238}}$

También hay O

	Natural	Enriquecido	Armamento
x	0.72%	3%	90%
$\overline{\eta}$	1.32	1.80	2.03

La composición de la mezcla cambia con el tiempo



2016, Antonio González Fernández

Elementos fisionables: los que experimentan fisión inducida

Incident neutron energy (MeV)

Todos los elementos físiles son fisionables

El ²³⁸U y otros elementos experimentan fisión si los neutrones rápidos tienen energía por encima del umbral

Elementos fértiles: generan elementos físiles

El ²³⁸U es fisionable, pero no físil, pero si captura un neutrón rápido...

$$\begin{array}{c|c}
238 \\
92 \\
\end{array} + n \quad \begin{array}{c}
239 \\
92 \\
\end{array} + n \quad \begin{array}{c}
\beta^{-} \\
93 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
239 \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array} + p \quad \begin{array}{c}
\beta^{-} \\
94 \\
\end{array}$$

El ²³²Th también es fértil

$$+n \xrightarrow{233} \text{Th} \xrightarrow{\beta^-} \xrightarrow{233} \text{Pa} \xrightarrow{\beta^-} \xrightarrow{233} \text{U}$$

González Fernández Reactores:

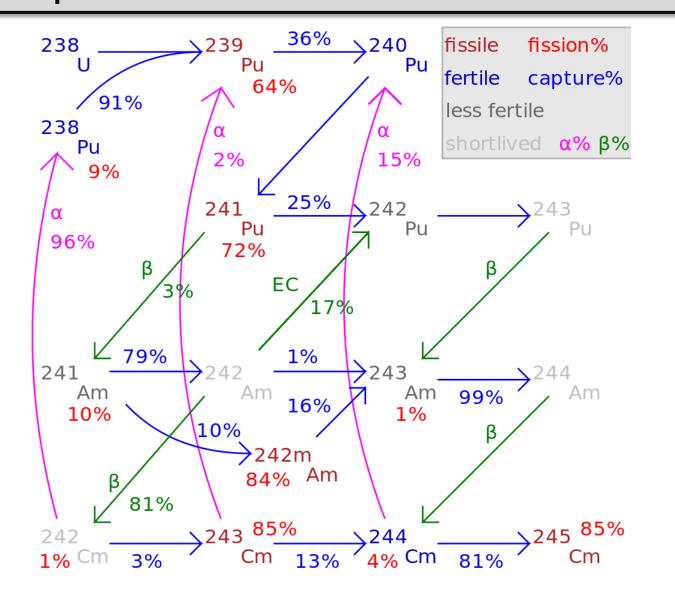
Converter

Burner

Transforma combustible

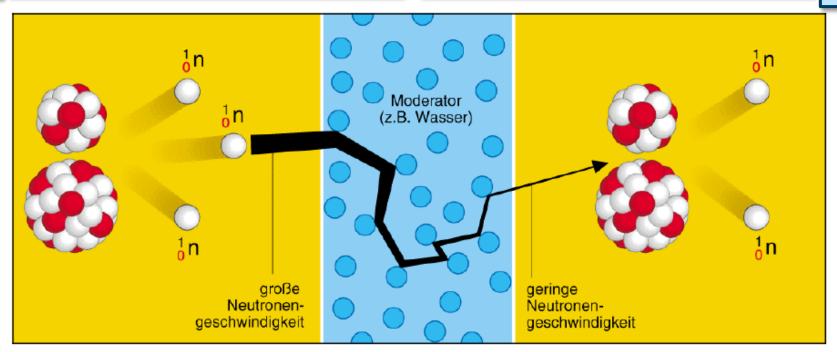
Quema combustible

Produce combustible Breeder


Térmicos

Rápidos

Elementos fértiles: el panorama es más complicado

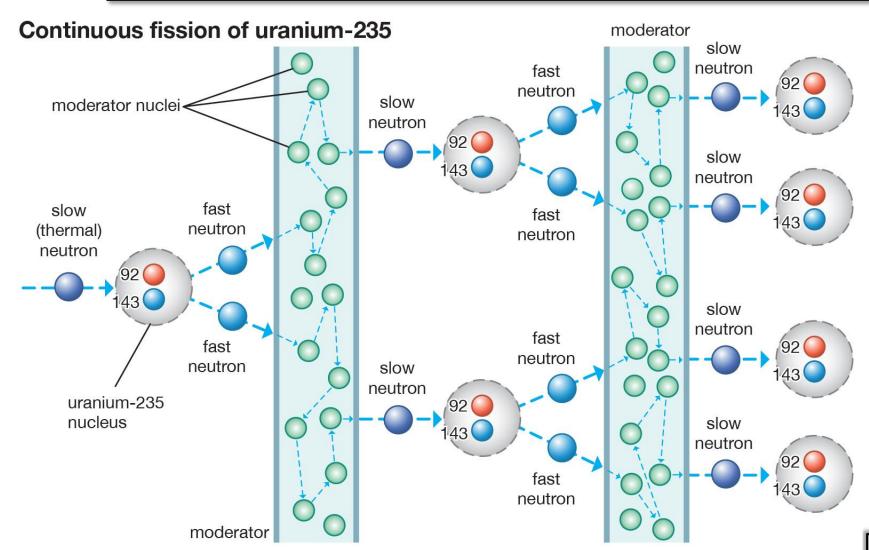

El efecto del moderador es *termalizar* los neutrones

Rápidos

Los neutrones que se producen en una fisión tienen energías de ~2MeV

Los neutrones que inducen una fisión de ²³⁵U tienen energías < 1eV

Térmicos


Para pasar de una energía a otra hay que frenar los neutrones

Antonio González Fernández

La moderación se produce mediante colisiones

La moderación se produce mediante colisiones

Los neutrones no poseen carga eléctrica

No se frenan por fuerzas eléctricas

Hacen falta colisiones

Colisión: interacción breve entre dos partículas

Tras la colisión, el n reaparece

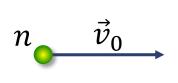
Elástica (n, n)

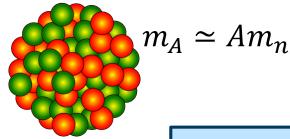
Se conserva la energía

El núcleo sigue en el estado fundamental

Inelástica o plástica (n, n')

El núcleo pasa a un estado excitado


La e. cinética disminuye


El núcleo decae más tarde (emitiendo radiación γ)

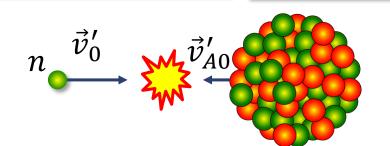
Teoría de colisiones elásticas. Antes de la colisión

Un neutrón con \vec{v}_0 incide sobre un núcleo en reposo

En u.m.a.

Se conserva la cantidad de movimiento

$$m_n \vec{v}_n + m_A \vec{v}_A = \vec{p} \quad \vec{v}_n + A \vec{v}_A = \vec{v}_0$$


$$\vec{v}_n + A\vec{v}_A = \vec{v}_0$$

La velocidad del CM es constante

$$\vec{v}_G = \frac{\vec{p}}{M} = \frac{m_n \vec{v}_n + m_A \vec{v}_A}{m_n + m_A} = \frac{\vec{v}_0}{1 + A}$$

En el sistema CM

$$\vec{p}' = \vec{0}$$
 cte.

$$\vec{v}_0' = \vec{v}_0 - \vec{v}_G = \frac{A\vec{v}_0}{1+A}$$

$$\vec{v}_{A0}' = \vec{0} - \vec{v}_G = -\frac{\vec{v}_0}{1+A}$$

Teoría de colisiones elásticas. Tras la colisión

Se conserva la cantidad de movimiento

$$\vec{0} = \vec{p}' = \vec{v}_n' + A\vec{v}_A'$$

$$\vec{v}_n' = -A\vec{v}_A'$$

Salen en direcciones opuestas

$$v_n'$$
 v_n'
 θ
 v_A'
 A

$$\vec{v}_n' = v_n'(\cos(\theta)\,\vec{\iota} + \sin(\theta)\,\vec{\jmath})$$

 θ : ángulo de dispersión (scattering) en el sistema CM

En el sistema laboratorio

$$\vec{v}_n = \vec{v}_G + \vec{v}_n' = \left(\frac{v_0}{1+A} + v_n' \cos(\theta)\right) \vec{\iota} + v_n' \sin(\theta) \vec{\jmath}$$

Teoría de colisiones elásticas. Conservación de la energía cinética

En una colisión elástica se conserva la energía cinética

$$\frac{1}{2}|\vec{v}_n'|^2 + \frac{A}{2}|\vec{v}_A'|^2 = \frac{1}{2}|\vec{v}_0'|^2 + \frac{A}{2}|\vec{v}_{0A}'|^2$$

$$\frac{1}{2}|\vec{v}_n'|^2 \left(1 + \frac{1}{A}\right) = \frac{1}{2}|\vec{v}_0'|^2 \left(1 + \frac{1}{A}\right) |\vec{v}_n'| = |\vec{v}_0'|$$

En el sistema CM, el neutrón sale con la misma rapidez.

Solo cambia su dirección

¿Cómo frena entonces?

 \vec{v}'_n \vec{v}'_n \vec{v}'_n A

En el sistema laboratorio sí cambia su rapidez

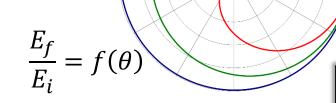
Energía tras la colisión

$$\vec{v}_n = \vec{v}_G + \vec{v}'_n = \left(\frac{v_0}{1+A} + \frac{Av_0}{1+A}\cos(\theta)\right)\vec{\iota} + \frac{Av_0}{1+A}\sin(\theta)\vec{\jmath}$$

$$\theta = 0$$

No colisión
$$ec{v}_n = v_0 \vec{\iota}$$

$$E_f/E_i=1$$


$$\theta = \pi$$

$$\vec{v}_n = \frac{v_0(1-A)}{1+A}\vec{i}$$

Colisión frontal
$$\vec{v}_n = \frac{v_0(1-A)}{1+A}\vec{\iota}$$
 $\frac{E_f}{E_i} = \left(\frac{1-A}{1+A}\right)^2 \equiv \alpha$

$$\frac{E_f}{E_i} = \frac{1 + A^2 + 2A\cos(\theta)}{(1+A)^2} = \begin{cases}
\alpha \le \frac{E_f}{E_i} \le 1 \\
= \frac{1+\alpha}{2} + \frac{1-\alpha}{2}\cos(\theta)
\end{cases}$$

$$\alpha \le \frac{E_f}{E_i} \le 1$$

Pérdidas sucesivas de energía por colisión

¿Cuánta se reduce la energía en promedio?

En el sistema CM puede salir en cualquier dirección (isotropía)

$$\left\langle \frac{E_f}{E_i} \right\rangle = \frac{1+\alpha}{2}$$

¿Cuántas colisiones hacen falta para termalizar un neutrón?

$$\left\langle \frac{E_f}{E_i} \right\rangle_N = \left(\frac{1+\alpha}{2}\right)^N$$

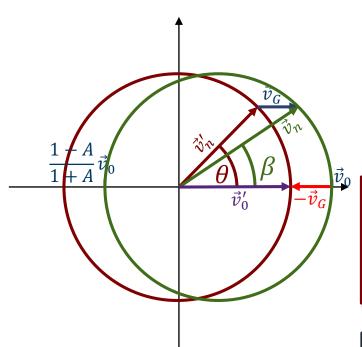
$$\left|\frac{E_f}{E_i}\right|_N = \left(\frac{1+\alpha}{2}\right)^N \qquad N = \frac{\ln(E_f/E_i)}{\ln((1+\alpha)/2)}$$

$E_f = k_B T = 25 \text{meV}$

$$E_i = 2 \text{MeV}$$

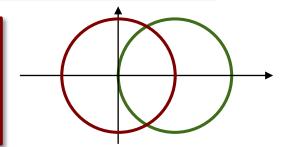
2016, Antonio

Α	1 (H)	2 (D)	12 (C)	238 (U)	
α	0.00	0.11	0.72	0.98	
$(1+\alpha)/2$	0.50	0.56	0.86	0.99	
N	26	31	119	2175	


El moderador debe ser ligero

Cambio en la dirección

En el sistema laboratorio no hay isotropía


$$\vec{v}_n = \frac{v_0}{1+A}\vec{i} + \frac{v_0A}{1+A}(\cos(\theta)\vec{i} + \sin(\theta)\vec{j})$$
$$= v_n\cos(\beta)\vec{i} + v_n\sin(\beta)\vec{j}$$

$$\cos(\beta) = \frac{1 + A\cos(\theta)}{\sqrt{1 + A^2 + 2A\cos(\theta)}}$$

$$\langle \cos(\beta) \rangle = 2/(3A)$$

El hidrógeno (A = 1) desvía poco

Aumenta la probabilidad de fuga

¿Cuál es el mejor moderador?

El hidrógeno es el que más frena

Pero...

El H₂ es un gas

Se necesita un material más denso (más colisiones/cm³)

El H₂0 es mucho más efectivo que el H₂

Pero...

El H absorbe neutrones

$$\frac{1}{1}H + \frac{1}{0}n \rightarrow \frac{2}{1}H$$
 (deuterio, D)

Se necesita un material poco absorbente

Hay que comparar las secciones eficaces de absorción

Comparación de secciones eficaces

		Therm	al cross section	(barn)	Fast	cross section (b	arn)
		Scattering	Scattering Capture Fission		Scattering	Capture	Fission
tor	H-1	20	0.2	-	4	0.00004	-
Moderator	H-2	4	0.0003	-	3	0.000007	-
Σ	C (nat)	5	0.002	-	2	0.00001	-
(0)	Au-197	8.2	98.7	-	4	0.08	-
others	Zr-90	5	0.006	-	5	0.006	-
Structural materials, others	Fe-56	10	2	-	20	0.003	-
nater	Cr-52	3	0.5	-	3	0.002	-
uraln	Co-59	6	37.2	-	4	0.006	-
truct	Ni-58	20	3	-	3	0.008	-
S	0-16	4	0.0001	_	3	0.00000003	-
	B-10	2	200	-	2	0.4	-
rber	Cd-113	100	30000	-	4	0.05	-
Absorber	Xe-135	400000	2000000	_	5	0.0008	-
	In-115	2	100	_	4	0.02	-
	U-235	10	99	583[5]	4	0.09	1
Fuel	U-238	9	2	0.00002	5	0.07	0.3
	Pu-239	8	269	748	5	0.05	2

El mejor moderador es el agua pesada, D₂0

Ligero

Denso

Baja absorción

El grafito (C) es otro buen candidato

Fuente: JANIS

2016, Antonio González Fernández

Difusión de neutrones

Las colisiones provocan difusión de neutrones en el medio

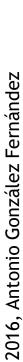
n: densidad de neutrones (n/cm³)

$$n = n(E)$$

Hay varias, divididas por energías

 ϕ : flujo de neutrones (n/(cm²·s))

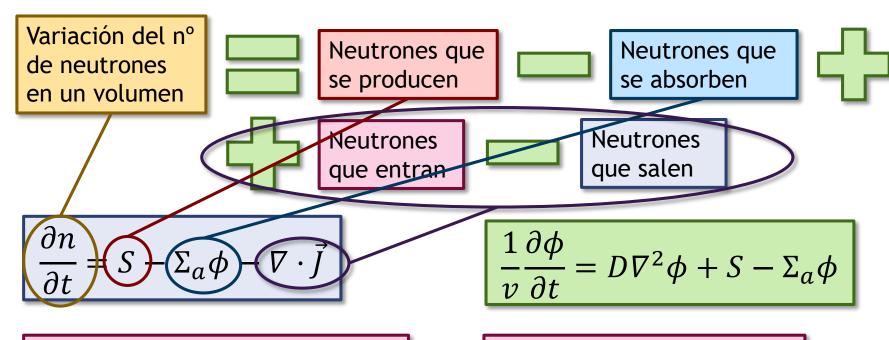
$$\phi = nv$$


v: rapidez típica a esa energía

 \vec{J} : corriente de neutrones (n/(cm²·s))

La corriente de neutrones cumple la ley de Fick

$$\vec{J} = -D\nabla\phi$$


D: coeficiente de difusión (cm)

Ecuación para la densidad de neutrones

Ley de conservación:

En el estado estacionario

$$D\nabla^2\phi + S - \Sigma_a\phi = 0$$

Hay que añadir condiciones de contorno

Fugas de neutrones. Se escapan por la superficie

En un reactor (ideal) de tamaño infinito todos los neutrones son moderados y finalmente absorbidos

En un reactor finito hay fugas (leakage)

Reducen el factor de multiplicación k

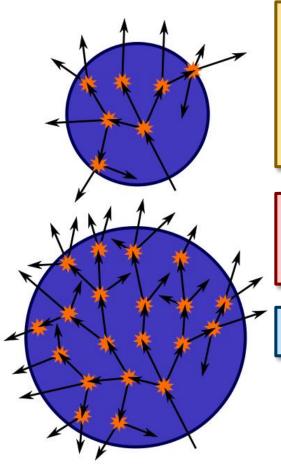
Dependen de

Tamaño

Forma

Blindaje

Hay una masa mínima para sostener la reacción


Masa crítica

2016, Antonio González Fernández

Masa crítica: la mínima para que haya reacciones en cadena

Para determinar el tamaño mínimo se emplean modelos

Capa (slab)

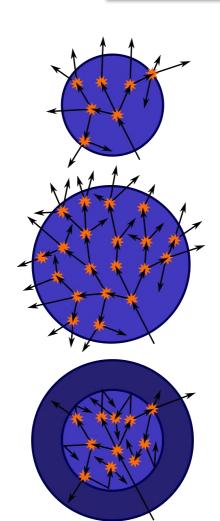
Cilindro

Esfera

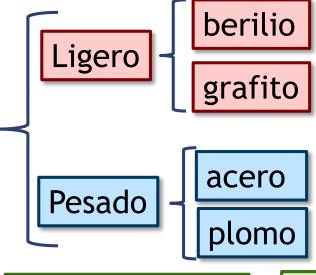
Otros

Hay que resolver la ecuación de difusión con fuentes y condiciones de contorno

En la superficie


$$\int \vec{J} \cdot \vec{n} = -\lambda \phi$$

Núclido	Semivida	Masa crítica	Diámetro
U-233	159.2 ky	15kg	11cm
U-235	704 My	52kg	17cm
Pu-239	24.11 ky	10kg	9.9cm


Esfera pura

Reflectores de neutrones

Para reducir las fugas se recubre el reactor de un material reflectante a los neutrones

Actúa también como moderador

En la superficie

$$\vec{J} \cdot \vec{n} = 0$$

Puede incrementar dramáticamente la criticalidad (accidentes del Demon Core)

Absorción de neutrones

Finalmente, los neutrones pueden ser capturados por distintos elementos

Elementos físiles

U-235

Pu-239

Elementos fisionables

U-238

Elementos fértiles

U-238

Elementos estructurales

O, del UO₂

metales

Moderador

H, del H₂O

Refrigerante

H, del H₂O

Productos de fisión

Xe-135 | Cd-113

In-115

Comparación de secciones eficaces de captura de neutrones

		Therma	Thermal cross section (barn)		Fast	ast cross section (barn)	
		Scattering	Capture	Fission	Scattering	Capture	Fission
for	H-1	20	0.2	-	4	0.00004	-
Moderator	H-2	4	0.0003	-	3	0.000007	-
Ψ	C (nat)	5	0.002	-	2	0.00001	-
10	Au-197	8.2	98.7	-	4	0.08	-
others	Zr-90	5	0.006	-	5	0.006	-
Structural materials, others	Fe-56	10	2	-	20	0.003	-
nater	Cr-52	3	0.5	-	3	0.002	-
ural n	Co-59	6	37.2	-	4	0.006	-
truct	Ni-58	20	3	-	3	0.008	-
S	0-16	4	0.0001	-	3	0.00000003	-
	B-10	2	200	-	2	0.4	-
rber	Cd-113	100	30000	-	4	0.05	-
Absorber	Xe-135	400000	2000000	-	5	0.0008	-
	In-115	2	100	-	4	0.02	-
	U-235	10	99	583[5]	4	0.09	1
Fuel	U-238	9	2	0.00002	5	0.07	0.3
	Pu-239	8	269	748	5	0.05	2

Para la estructura es preferible usar zirconio

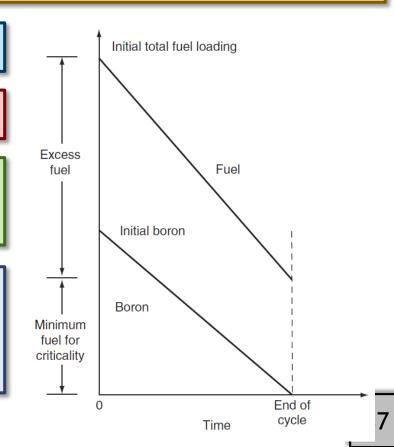
En régimen estacionario, la absorción es constante

Para fijar *k* hay que regular la absorción

La presencia de *venenos* reduce el valor de *k*

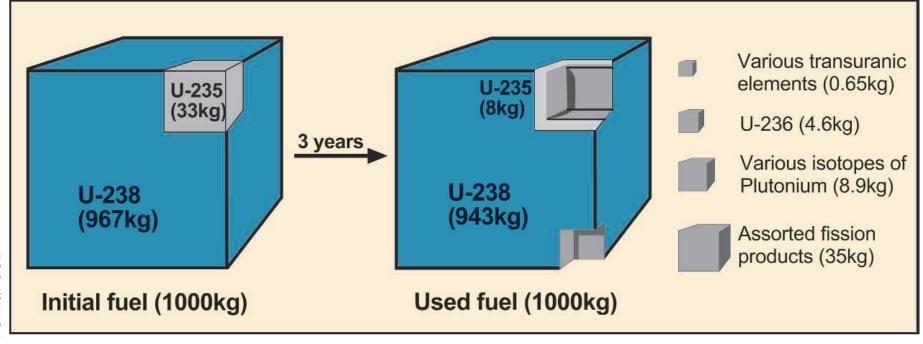
Veneno: sustancia con gran capacidad de captura de neutrones Puede ser un subproducto (Xe-135) o ser añadido externamente (B-10 disuelto en el agua)

Exceso:


detiene el reactor

Defecto:

accidente


El ²³⁵U del reactor no se llega a agotar

Cada cierto tiempo (1-2 años) debe detenerse el reactor para reponer combustible

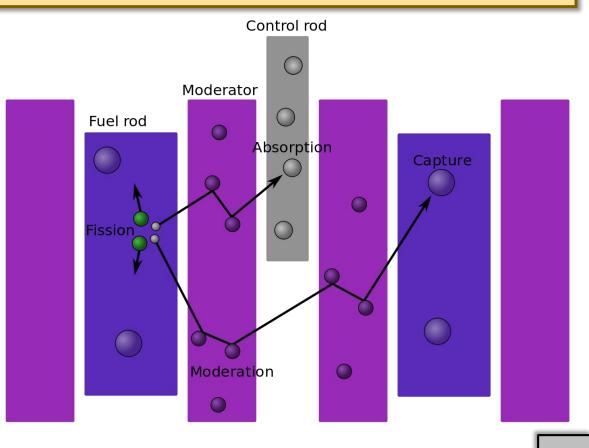
El combustible en un reactor térmico: antes y después

Al final del uso:

La mayoría del ²³⁵U se ha fisionado

Parte del ²³⁸U se ha transformado en ²³⁹Pu o ²⁴¹Pu y fisionado

Se han creado fragmentos radiactivos


Las barras de control permiten regular la absorción

El veneno disuelto permite regular cambios lentos en la reactividad (consumo de combustible)

Para cambios más rápidos (arranque, parada, incidente) se emplean barras de control

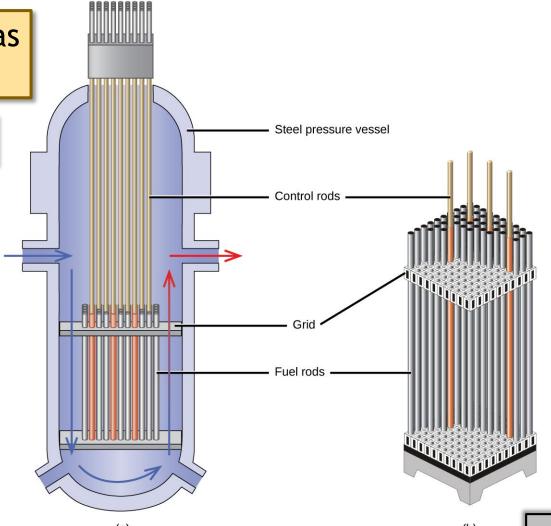
Son varillas móviles

Normalmente de carburo de boro

Las varillas de control tienen diferentes usos

Van intercaladas entre las varillas de combustible

Hay de diferentes tipos


Regulación

Picos locales

Incidente

2016, Antonio González Fernández

En caso de accidente se produce un scram: todas las varillas bajan

La multiplicación en una reacción en cadena: la fórmula de seis factores

 $k = \frac{\text{número de neutrones en una generación}}{\text{número de neutrones en la precedente}}$

k depende de:

Producción

Absorción

Moderación

Fuga

Se calcula aproximadamente por la six-factor-formula

$$k = \eta \epsilon p f L_f L_T$$

El proceso se divide en pasos y cada factor se estima por separado

Factor de reproducción y factor de neutrones rápidos

1. Se particulariza la anterior para neutrones térmicos

$$\eta = \frac{\text{neutrones rápidos debidos a neutrones térmicos}}{\text{neutrones térmicos absorbidos por el fuel}}$$

Debe ser > 1

Ej.
$$\eta = 1.79$$

2. No todos los neutrones rápidos provienen de fisiones debidas a n térmicos. Algunas son causadas por n rápidos

$$\epsilon = \frac{\text{total de neutrones rápidos emitidos}}{\text{neutrones rápidos debidos a neutrones térmicos}}$$

Ej.
$$\epsilon = 1.067$$

Fuga (leakage) de neutrones rápidos

3. Los neutrones rápidos, por su gran velocidad, tienen un recorrido libre medio muy largo. Pueden escapar de la celda de combustible

$$1 - L_f = \frac{\text{número de neutrones rápidos que escapan}}{\text{número de neutrones rápidos}}$$

...y la complementaria...

$$L_f = \frac{\text{número de neutrones que no se escapan}}{\text{número de neutrones rápidos}}$$

Ej.
$$1 - L_f = 0.283$$
, $L_f = 0.717$

Absorción de neutrones rápidos

4. Una parte de los neutrones rápidos es absorbida por los materiales del reactor

La sección eficaz suele ser baja, salvo en la *absorción de* resonancia del ²³⁸U, que aparece al moderarse los neutrones

$$1 - p = \frac{\text{neutrones rápidos absorbidos}}{\text{número de neutrones que no se escapan}}$$

...y la complementaria...

$$p = \frac{\text{neutrones rápidos no absorbidos}}{\text{número de neutrones que no se escapan}}$$

Ej.
$$1 - p = 0.173$$
, $p = 0.827$

Fuga (leakage) de neutrones térmicos

5. Los neutrones térmicos tienen un recorrido libre medio muy corto, no obstante, algunos pueden escapar

$$1 - L_T = \frac{\text{número de neutrones térmicos que escapan}}{\text{neutrones rápidos no absorbidos}}$$

$$L_T = \frac{\text{número de neutrones térmicos que no se escapan}}{\text{neutrones rápidos no absorbidos}}$$

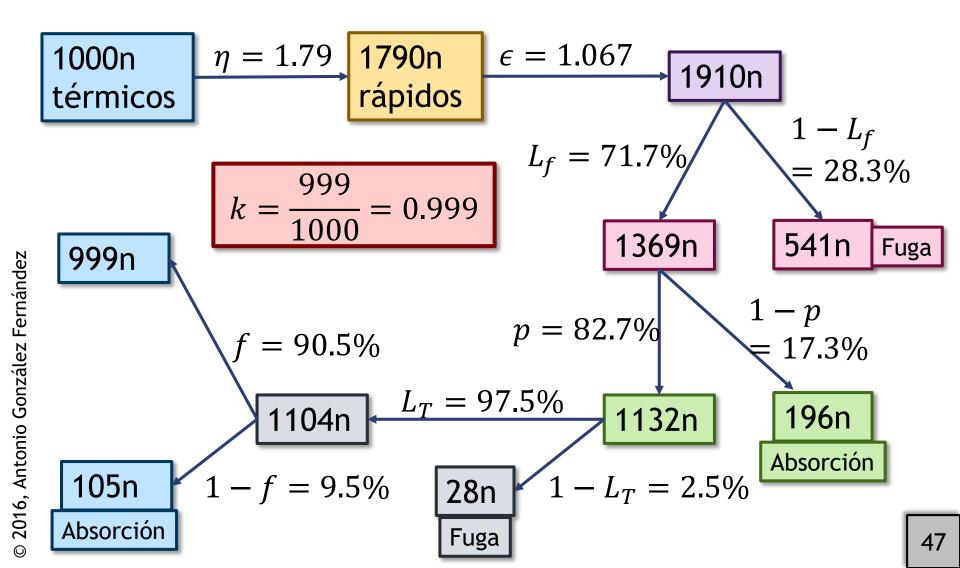
$$1-L_T\ll 1-L_f$$

Ej.
$$1 - L_T = 0.025$$
, $L_T = 0.975$

Absorción de neutrones térmicos

Todos los neutrones que no escapan acaban siendo absorbidos

6. Algunos neutrones térmicos son absorbidos por el moderador, el veneno, el refrigerante y el recubrimiento


$$f = \frac{\text{número de neutrones térmicos absorbidos por el fuel}}{\text{número de neutrones térmicos que no se escapan}}$$

$$1 - f = \frac{\text{número de neutrones térmicos absorbidos por otros}}{\text{número de neutrones térmicos que no se escapan}}$$

Ej.
$$1 - f = 0.095$$
, $f = 0.905$

El ciclo de los neutrones

Formula de 6 factores y fórmula de 4 factores

$$k = \epsilon p f \eta L_f L_T$$

Fórmula de seis factores

En un reactor infinitamente extenso, no se escapa ningún neutrón, $L_f=1$ y $L_T=1$

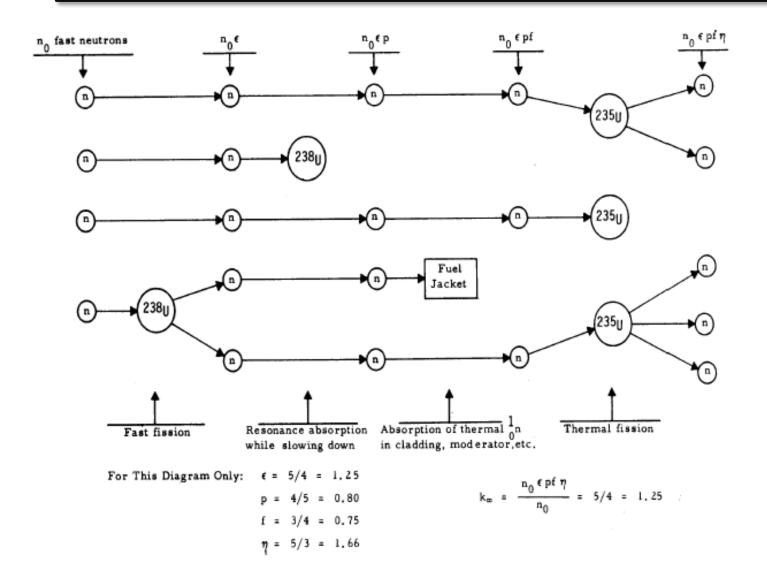
$$k_{\infty} = \epsilon p f \eta$$

Fórmula de cuatro factores

En nuestro ejemplo:

$$k = 0.999$$

 $k_{\infty} = 1.429$


Con el combustible se fijan η , ϵ y p

Con el diseño: L_f y L_T

En operación: f

Ejemplo simple de la fórmula de 4 factores

No siempre un reactor opera en régimen estacionario

En arranque o parada la potencia va cambiando

 $k \neq 1$

Reactividad del reactor

$$\rho = \frac{\delta k}{k} = \frac{k-1}{k}$$

 $\rho > 0$

Supercrítico

 $\rho < 0$

Subcrítico

Hay que usar la ec. dependiente del tiempo

$$\frac{1}{v}\frac{\partial \phi}{\partial t} = D\nabla^2 \phi + \Sigma_f \phi - \Sigma_a \phi$$

Esta ecuación no tiene en cuenta que no todo es simultáneo

 Δt para emitir los neutrones

 Δt para moderar los neutrones

 Δt para capturar los neutrones

© 2016, Antonio González Fern

Un reactor supercrítico sin neutrones diferidos es inestable

Cuando k sube del valor crítico se introducen las barras absorbentes de B₄C. ¿Hay tiempo para hacerlo?

El tiempo τ de cada generación es muy corto, por lo que la situación puede descontrolarse rápidamente

Si k=1.001 y $\tau\simeq 10^{-4}$ s, ¿Cuanto crece en 1s?

$$N = 1.001^{10^4} N_0 = 22000 N_0$$

¡Accidente!

En general

$$N(t) = (1 + \delta k)^{\frac{t}{\tau}} N_0 \simeq N_0 e^{\frac{t}{T}}$$

$$T = \frac{\tau}{\delta k} = \frac{\tau}{k - 1}$$

La importancia de los neutrones diferidos

Una parte (0.65%) de los neutrones son diferidos (delayed)

			Decay		Yield,	
Group	Half-Lif	e (s)	Constant	Energy (keV)	Neutrons per	Fraction
			(s-1)		Fission	
	1	55.72	0.0124	250	0.00052	0.000215
	2	22.72	0.0305	560	0.00546	0.001424
	3	6.22	0.111	405	0.0031	0.001274
	4	2.3	0.301	450	0.00624	0.002568
	5	0.614	1.14		0.00182	0.000748
	6	0.23	3.01		0.00066	0.000273
Total						0.006502

El tiempo efectivo es una combinación del de los inmediatos y del de los diferidos

$$T_{ef} = \left(1 - \sum_{i} \beta_{i}\right) T + \sum_{i} \beta_{i} (T + T_{i}) \simeq 0.083 \text{s} \gg 10^{-4} \text{s}$$

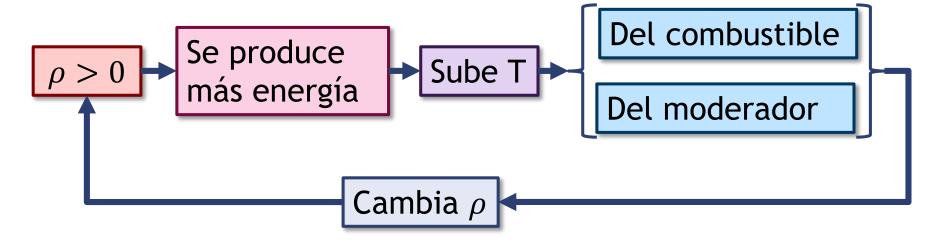
Criticalidad inmediata y diferida

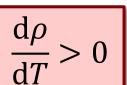
El reactor puede ser subcrítico en los neutrones inmediatos y dar tiempo de reacción suficiente

Criticalidad inmediata (prompt critical)

 $\rho > 0$ sin los neutrones diferidos

Reacción explosiva


Criticalidad diferida (delayed critical)


ho < 0 sin los neutrones diferidos pero ho > 0 con ellos

Reacción controlable

El cambio en la reactividad cambia la reactividad

Feedback positivo

Descontrol

 $\frac{\mathrm{d}\rho}{\mathrm{d}T}$

 $\frac{o}{T} < 0$

Feedback negativo

Control

Influyen más factores además de la temperatura

Dependencia con la temperatura del combustible (coeficiente Doppler)

$$\alpha_{T_{\text{fuel}}} = \frac{\partial \rho}{\partial T_{\text{fuel}}}$$

Si sube la temperatura del combustible

Dilatación

Mayor agitación

Mayor T del U-238

Menos neutrones por unidad de volumen, $\rho \downarrow$

Más energía de los neutrones térmicos, $\rho \uparrow$

Más absorción en la zona de resonancia, $\rho \downarrow$

La absorción es el efecto dominante

$$\alpha_{T_{\mathrm{fuel}}} < 0$$

Dependencia con la temperatura del moderador (MTC)

$$\alpha_{T_{\mathbf{M}}} = \frac{\partial \rho}{\partial T_{\mathbf{M}}}$$

Si sube la temperatura del moderador

Menor densidad

Mayor agitación

Menor moderación, $\rho \downarrow$

Menor absorción, $\rho \uparrow$

Mayor *scattering* y menos fugas, $\rho \uparrow$

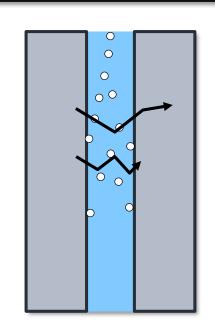
Domina la menor absorción

$$\alpha_{T_{\rm M}} < 0$$

El efecto de las burbujas: coeficiente de vacío (void coefficient)

En los reactores con moderadores y/o refrigerantes líquidos pueden formarse burbujas

Daños mecánicos (cavitación)


Cambio en la reactividad

Moderación

Absorción

Cambio en la refrigeración

El cambio en la reactividad se mide con el coeficiente de vacío (void coefficient)

$$\alpha_V = \frac{\partial \rho}{\partial f}$$

Puede ser > 0 o < 0

f: fracción de vacío

Dependencia con la presión del moderador (pressure coefficient)

$$\alpha_{p_{\mathbf{M}}} = \frac{\partial \rho}{\partial p_{\mathbf{M}}}$$

Si aumenta la presión del moderador

Mayor densidad

Mayor moderación, ρ \uparrow

$$\alpha_{p_{\mathrm{M}}} > 0$$

Este efecto es normalmente despreciable

El agua es casi incompresible

La presión se controla externamente