

Tema 6: Cinética de la partícula

FISICA I, 1º, Grado en Ingeniería Electrónica, Robótica y

Mecatrónica

Departamento Física Aplicada III

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

- Introducción
- Trabajo mecánico
- Energía cinética
- Energía potencial
- Energía mecánica
- Cantidad de movimiento
- Momento cinético (o angular)

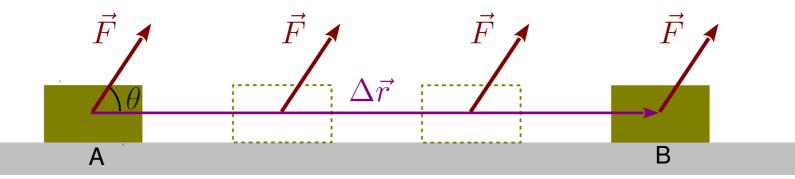
Introducción

- Las magnitudes cinéticas combinan elementos de cinemática y de inercia
 - Trabajo
 - Energías cinética, potencial y mecánica
 - Cantidad de movimiento (o momento lineal)
 - Momento cinético respecto a un punto (o angular)
- Algunas de estas magnitudes se conservan durante el movimiento de una partícula
 - Se puede obtener información sin resolver todos los detalles
- Forma alternativa de estudiar la Dinámica
 - En algunos problemas se puede encontrar la velocidad sin tener que resolver una ecuación diferencial

- Introducción
- Trabajo mecánico
- Energía cinética
- Energía potencial
- Energía mecánica
- Cantidad de movimiento
- Momento cinético (o angular)

Trabajo mecánico: fuerza constante y movimiento unidireccional

La fuerza realiza un trabajo sobre el cuerpo durante su movimiento



$$W_A^B = \vec{F} \cdot \Delta \vec{r} = |\vec{F}| |\Delta \vec{r}| \cos \theta$$

El signo depende del sentido relativo

$$\theta < \pi/2 \Rightarrow W_A^B > 0$$

$$\theta > \pi/2 \Rightarrow W_A^B < 0$$

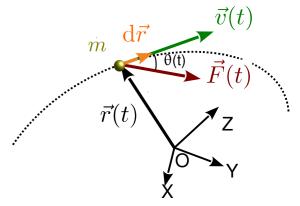
$$\theta=\pi/2\Rightarrow W_A^B=0$$
 $ightharpoonup$ si ${f F}\perp {
m d}{f r}$ no hay trabajo mecánico

En el SI internacional la unidad base es el Julio: $J=N\cdot m=kg\,m^2s^{-2}$

Trabajo mecánico: fuerza variable y trayectoria arbitraria

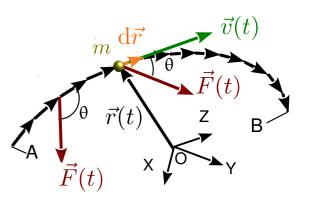
- Se divide el trayecto en segmentos infinitesimales
- Trabajo de la fuerza sobre la partícula cuando esta se desplaza un dr

$$\delta W = \vec{F} \cdot d\vec{r} = |\vec{F}| |d\vec{r}| \cos \theta$$



En un recorrido finito el trabajo total es la suma de los trabajos infinitesimales

$$W_A^B = \int_A^B \delta W = \int_A^B \vec{F} \cdot d\vec{r}$$



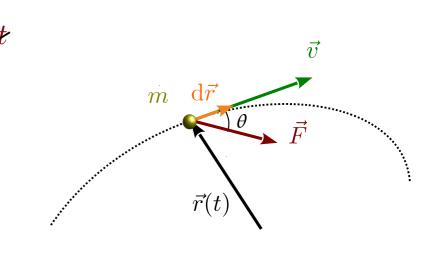
Energía cinética

Teniendo en cuenta la definición de velocidad y la Segunda Ley de Newton

$$\delta W = \vec{F} \cdot d\vec{r} = \vec{F} \cdot \vec{v} dt = m \vec{a} \cdot \vec{v} dt = m \frac{d\vec{v}}{dt} \cdot \vec{v} dt$$

$$= m \vec{v} \cdot d\vec{v} = m d \left(\frac{1}{2} \vec{v} \cdot \vec{v}\right) = m d \left(\frac{1}{2} v^2\right)$$

$$\delta W = d \left(\frac{1}{2} m v^2\right)$$



Puede interpretarse diciendo que, al realizar trabajo sobre la partícula, la fuerza le transfiere la cantidad d(mv²/2) en el trayecto dr

- Introducción
- Trabajo mecánico
- Energía cinética
- Energía potencial
- Energía mecánica
- Cantidad de movimiento
- Momento cinético (o angular)

Energía cinética

Definición

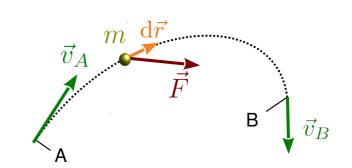
$$T = K = \frac{1}{2}m v^2$$

- Es un escalar
- Está relacionada con la capacidad de la partícula de realizar trabajo
- Se mide en Julios
- Depende de las propiedades de la partícula: masa y velocidad
 - Combina la inercia (m) con la cinemática (v)
 - No es igual que caiga en el pie una pluma que una bola de plomo, aunque tengan la misma velocidad

Energía cinética: relación con el trabajo

Trabajo total de una fuerza sobre una partícula en el trayecto A - B

$$W_A^B = \int_A^B \delta W = \int_A^B d\left(\frac{1}{2}m\,v^2\right) = \frac{1}{2}m\,v_B^2 - \frac{1}{2}m\,v_A^2 \qquad \overrightarrow{V}_A \qquad \overrightarrow{F}_B$$



Teorema de las fuerzas vivas o de la energía cinética

$$W_A^B = \Delta T = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$

$$\delta W = \mathrm{d}T$$

Versión finita

Versión local

- El trabajo modifica el valor de la energía cinética de la partícula
- Es válido para cualquier tipo de fuerza
- Si hay varias fuerzas actuando

$$\frac{1}{2}m v_B^2 - \frac{1}{2}m v_A^2 = W_{\text{neto}}|_A^B$$

Potencia

Potencia instantánea

$$P_W = \frac{\mathrm{d}W}{\mathrm{d}t}$$

- Mide la tasa con la que se realiza trabajo
- Se mide en Watios (SI) $W = J/s = kg m^2 s^{-3}$
- Trabajo a partir de la potencia: $dW = P_W dt$
- Potencia transferida por una fuerza sobre una partícula en movimiento

$$P_W = \frac{\mathrm{d}W}{\mathrm{d}t} = \frac{\vec{F} \cdot \mathrm{d}\vec{r}}{\mathrm{d}t} = \vec{F} \cdot \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \vec{F} \cdot \vec{v}$$

Versión instantánea del teorema de las fuerzas vivas

$$P_W = \frac{\mathrm{d}T}{\mathrm{d}t} \qquad \qquad \mathrm{d}T = P_W \,\mathrm{d}t$$

Conservación de la energía cinética

Si la fuerza neta que actúa sobre un punto material es nula o perpendicular a su trayectoria, su energía cinética se conserva constante a lo largo del tiempo

$$\vec{F}_T = \vec{0}$$

$$\vec{F}_T \perp d\vec{r}$$
 $\rightarrow \delta W_T = \vec{F}_T \cdot d\vec{r} = 0 \longrightarrow dT = 0 \longrightarrow T = \text{cte}$

- **Ejemplos**
 - Partícula libre
 - Movimiento de un satélite artificial alrededor de la Tierra (considerando la órbita circular)
 - Movimiento de la Tierra respecto al Sol (considerando la órbita circular)
 - Movimiento de una carga eléctrica en el seno de un campo magnético

- Introducción
- Trabajo mecánico
- Energía cinética
- Energía potencial
- Energía mecánica
- Cantidad de movimiento
- Momento cinético (o angular)

Energía potencial

Una fuerza es conservativa si el trabajo que realiza sobre un punto material que se desplaza entre dos puntos no depende de la trayectoria seguida

$$W_{A,\Gamma_{1}}^{B} = \int\limits_{A,\Gamma_{1}}^{B} \vec{F} \cdot d\vec{r}$$

$$W_{A,\Gamma_{2}}^{B} = \int\limits_{A,\Gamma_{2}}^{B} \vec{F} \cdot d\vec{r}$$

$$W_{A,\Gamma_{2}}^{B} = \int\limits_{A,\Gamma_{2}}^{B} \vec{F} \cdot d\vec{r}$$

$$W_{A,\Gamma_{2}}^{B} = \int\limits_{A,\Gamma_{2}}^{B} \vec{F} \cdot d\vec{r}$$

La diferencia de energía potencial entre dos puntos es el trabajo realizado por la fuerza conservativa cuando la partícula se mueve entre esos dos puntos, cambiando

el signo
$$U_B-U_A=-W_A^B=-\int\limits_{-L}^B \vec{F}^C\cdot \mathrm{d}\vec{r} \qquad \qquad W_A^B=-\Delta U$$

- El origen de la energía potencial es arbitrario
- La energía potencial de una partícula depende de su posición en un campo de fuerzas conservativo

Energía potencial gravitatoria (cerca de la superficie)

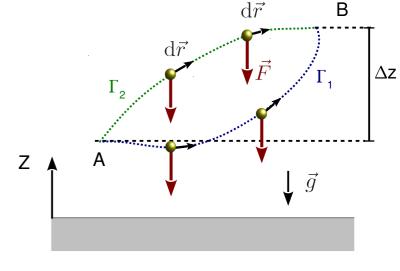
Fuerza gravitatoria cerca de la superficie

$$\vec{F}_g = m \, \vec{g} = -m \, g \, \vec{k}$$

Trabajo realizado por **F**_q en un desplazamiento

infinitesimal

$$\delta W = \vec{F}_g \cdot d\vec{r} = m\vec{g} \cdot d\vec{r} = -mgdz = -dU$$



$$d\vec{r} = dx \, \vec{i} + dy \, \vec{j} + dz \, \vec{k}$$
$$m\vec{g} \cdot d\vec{r} = -mg \, dz$$

$$U_B - U_A = \int_A^B dU = -\int_A^B \vec{F}_g \cdot d\vec{r} = \int_{z_A}^B mg \, dz = mg \int_{z_A}^{z_B} dz = mg(z_B - z_A) = mg\Delta z$$

Energía potencial gravitatoria (con una referencia arbitraria en z=0)

$$U(z) = U(0) + mgz$$

Energía potencial gravitatoria (masa puntual)

Energía potencial gravitatoria para una masa puntual

$$\vec{F}_g = -G \, M \, m \frac{\vec{r}}{r^3}$$

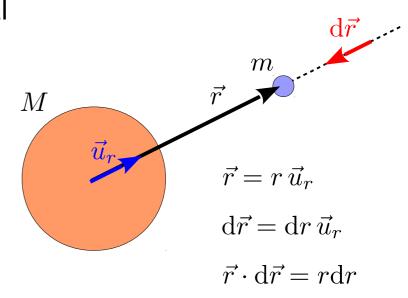
- La masa m viene desde el infinito
- El trabajo realizado en un desplazamiento infinitesimal es

$$\delta W = \vec{F}_g \cdot d\vec{r} = -\frac{GMm}{r^3} \vec{r} \cdot d\vec{r} = -GMm \frac{dr}{r^2} = -dU$$

$$U_A - U_\infty = \int_{-\infty}^A dU = -\int_{-\infty}^A \vec{F}_g \cdot d\vec{r} = \int_{-\infty}^{r_A} GMm \frac{dr}{r^2} = \left[-GMm \frac{1}{r} \right]_{-\infty}^{r_A} = -\frac{GMm}{r_A}$$

Energía potencial gravitatoria (tomando energía potencial cero en el infinito)

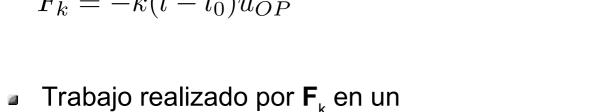
$$U(r) = -\frac{GMm}{r}$$



Energía potencial de un muelle ideal

Fuerza del muelle

$$\vec{F}_k = -k(l-l_0)\vec{u}_{OP}$$



 $\mathrm{d}\vec{r}$

desplazamiento infinitesimal

$$\delta W = \vec{F}_k \cdot d\vec{r} = [-k(l - l_0)\vec{u}_{OP}] \cdot [dl \, \vec{u}_{OP}] = -k(l - l_0) \, dl = -dU$$

Energía potencial elástica (con referencia de potencial en I₀)

$$U(l) = U(l_0) - \int_{l_0}^{l} \vec{F}_k \cdot d\vec{r} = U(l_0) + \int_{l_0}^{l} k(l - l_0) dl$$

$$U(l) = U(l_0) + \frac{1}{2}k(l - l_0)^2$$

- Introducción
- Trabajo mecánico
- Energía cinética
- Energía potencial
- Energía mecánica
- Cantidad de movimiento
- Momento cinético (o angular)

Energía mecánica

Se define como la suma de la energía cinética y la energía potencial total (una energía potencial por cada fuerza conservativa)

$$E = T + U$$

Si todas las fuerzas que realizan trabajo sobre una partícula son conservativas su energía mecánica se conserva

Demostración

$$\delta W = \vec{F}_T^C \cdot d\vec{r} = \begin{vmatrix} -dU \\ dT \end{vmatrix} \longrightarrow dT + dU = 0 \longrightarrow d(T+U) = 0 \longrightarrow E = T+U = \text{cte}$$

Si hay fuerzas no conservativas el trabajo que realizan varía la energía mecánica

$$\delta W = \vec{F}_T^C \cdot d\vec{r} + \vec{F}^{NC} \cdot d\vec{r} = \begin{vmatrix} -dU + \delta W^{NC} \\ dT \end{vmatrix} \rightarrow \delta W^{NC} = dT + dU = dE \rightarrow W^{NC} = \Delta E$$

- Introducción
- Trabajo mecánico
- Energía cinética
- Energía potencial
- Energía mecánica
- Cantidad de movimiento
- Momento cinético (o angular)

Cantidad de movimiento (o momento lineal)

La cantidad de movimiento o momento lineal de una partícula es el producto de su masa por su velocidad

$$\vec{p} = m \, \vec{v}$$

 $[p] = kg m s^{-1}$

Teorema de la cantidad de movimiento

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\,\vec{v})}{\mathrm{d}t} = m\frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m\vec{a} \qquad \qquad \qquad \vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

- Es un enunciado alternativo de la Segunda Ley de Newton
- Impulso mecánico (Teorema de la cantidad de movimiento en forma elemental y finita)

$$d\vec{p} = \vec{F} dt \longrightarrow \Delta \vec{p} = \vec{p}(t_B) - \vec{p}(t_A) = \int_{t_A}^{t_B} \vec{F} dt$$

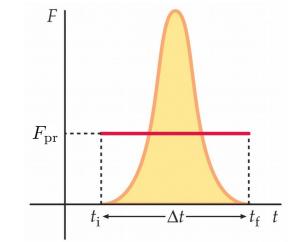
Es útil cuando la partícula sufre una fuerza en un intervalo de tiempo pequeño

$$\vec{F}_{media} \simeq \frac{\Delta \vec{p}}{\Delta t}$$

Impulso mecánico

- Percusión sobre una partícula
 - Una fuerza actúa sobre un tiempo muy corto

Si Δt es muy pequeño se puede despreciar el movimiento de la partícula durante la colisión y considerar la fuerza media ejercida sobre la partícula



- El problema después de la percusión se puede tratar como una partícula con velocidad inicial v
- La velocidad después de la percusión se calcula con el impulso mecánico

$$\Delta \vec{p} = \vec{p}_0 - \vec{0} = \int_{t_f}^{t_i} \vec{F} \, dt = \vec{I} \longrightarrow \vec{v}_0 = \frac{1}{m} \int_{t_i}^{t_f} \vec{F} \, dt \simeq \frac{1}{m} \vec{F}_{pr} \Delta t = \frac{\vec{I}}{m}$$

Conservación de la cantidad de movimiento

Si la fuerza neta que actúa sobre un punto material es nula se conserva su cantidad de movimiento

Demostración

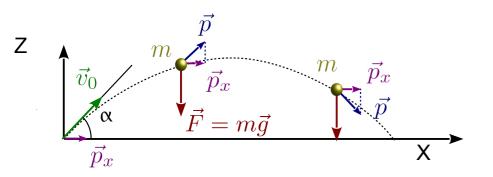
$$\vec{F} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

$$\vec{F} = 0 \longrightarrow \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{0} \longrightarrow \vec{p} = c\vec{t}e$$

Si la dirección de la fuerza es constante, se conserva la cantidad de movimiento en las direcciones perpendiculares a la fuerza

$$\vec{F} \perp \vec{n} \longrightarrow \vec{F} \cdot \vec{n} = 0 \longrightarrow \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} \cdot \vec{n} = 0 \longrightarrow \frac{\mathrm{d}(\vec{p} \cdot \vec{n})}{\mathrm{d}t} = 0 \longrightarrow \vec{p} \cdot \vec{n} = \mathrm{cte}$$

Ejemplo



$$\vec{F} \perp \vec{u}_x \longrightarrow \vec{p} \cdot \vec{u}_x = \text{cte} \longrightarrow p_x = \text{cte} \longrightarrow v_x = \text{cte}$$

$$\vec{v}(t) = \begin{cases} v_x = v_0 \cos \alpha \\ v_z = (v_0 \sin \alpha - gt) \end{cases}$$

- Introducción
- Trabajo mecánico
- Energía cinética
- Energía potencial
- Energía mecánica
- Cantidad de movimiento
- Momento cinético (o angular)

Momento cinético (o angular)

El momento cinético de un punto material respecto a un punto O es el producto vectorial

$$\vec{L}_O = \overrightarrow{OP} \times \vec{p} = \overrightarrow{OP} \times (m\vec{v})$$

$$\vec{p} = m\vec{v}$$

$$\vec{p} = m\vec{v}$$

$$\vec{p} = m\vec{v}$$

Teorema del Momento Cinético

$$\frac{\mathrm{d}\vec{L}_{O}}{\mathrm{d}t} = \frac{\mathrm{d}\overrightarrow{OP}}{\mathrm{d}t} \times \vec{p} + \overrightarrow{OP} \times \frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{v} \times (\vec{m}\vec{v}) + \overrightarrow{OP} \times \vec{F} = \overrightarrow{M}_{O}$$

$$\boxed{\frac{\mathrm{d}\vec{L}_{O}}{\mathrm{d}t} = \overrightarrow{M}_{O}}$$

Momento de una fuerza respecto a O: $\vec{M}_O = \overrightarrow{OP} \times \vec{F}$

Conservación del momento cinético

Si el momento repecto a un punto O de la fueza neta que actúa sobre una partícula es nulo, el momento cinético de la partícula respecto a O es constante

Ejemplo: movimiento central. La dirección de la fuerza neta pasa siempre por O

$$\vec{F} \parallel \overrightarrow{OP} \longrightarrow \vec{M}_O = \overrightarrow{OP} \times \vec{F} = \vec{0} \longrightarrow \frac{d\vec{L}_O}{dt} = \vec{0} \longrightarrow \vec{L}_O = \vec{cte}$$

Conservación parcial: Si el momento de la fuerza es perpendicular a un vector n fijo, se conserva la proyección del momento cinético sobre n

$$\overrightarrow{M}_O \perp \overrightarrow{n} \longrightarrow \overrightarrow{M}_O \cdot \overrightarrow{n} = 0 \longrightarrow \frac{\mathrm{d}\overrightarrow{L}_O}{\mathrm{d}t} \cdot \overrightarrow{n} = 0 \longrightarrow \frac{\mathrm{d}(\overrightarrow{L}_O \cdot \overrightarrow{n})}{\mathrm{d}t} = 0 \longrightarrow \overrightarrow{L}_O \cdot \overrightarrow{n} = \mathrm{cte}$$

Ejemplo: movimiento de traslación de la Tierra

