

Departamento de Física Aplicada III

Escuela Técnica Superior de Ingeniería

Camino de los Descubrimientos s/n 41092 Sevilla

Práctica 11: Asociación de dos muelles en paralelo

GRADO	ALUMNO(S) QUE REALIZARON LA PRÁCTICA	GRUPO
FECHA DE REALIZACIÓN		
FECHA DE ENTREGA		

Revisión de inventario

Dos muelles iguales
Dos varillas roscadas, una con dos tuercas
Un soporte para colgar las pesas
Seis pesas de 50 g
Una regla

Determinación de la constante de un muelle individual

Medida de la longitud natural			
$\ell_{ m sup}$ =	$\ell_{ m inf}$ =	ℓ_0 =	

Cálculo de la constante			
m	$\ell_{ m inf}$	$\ell_{ m eq}$	Recta $\ell_{eq} = A + Bm$
			A =
			B =
			r=
			Dato: $g = 9.80665 \text{ m/s}^2$
			k =

Determinación de la constante efectiva

Medida de la longitud natural		
ℓ_{sup} =	$\ell_{ m inf}$ =	ℓ ₀ =

Cálculo de la constante efectiva			
m	$\ell_{ m inf}$	$\ell_{ m eq}$	Recta $\ell_{eq} = A + Bm$
			A =
			B =
			r=
			Dato: $g = 9.80665 \text{ m/s}^2$
			k _{ef} =

Cuestiones

¿Es la constante de la asociación igual al doble de la de un muelle individual? Justifique la respuesta a partir de los resultados obtenidos.

Para el caso de un solo resorte, compárese el valor de la longitud natural del muelle (l_0) medido directamente con el muelle sin masas y con el calculado a partir de la recta de mejor ajuste. ¿Puede decirse que son coincidentes?

En el caso de la asociación de dos muelles, ¿cuál sería, con su incertidumbre, la longitud del muelle si se colgara una masa de 5kg? ¿Es realista este resultado?